
Volume Three—Modules 31 August 2004 i

Chapter Five: Contents
 (Traffic Microsimulator – 31 August 2004 – LA-UR 00-1725 – TRANSIMS 3.1)

1. INTRODUCTION..1
1.1 OVERVIEW ... 1
1.2 TRAFFIC MICROSIMULATOR MAJOR INPUT/OUTPUT... 2

2. TRAFFIC MICROSIMULATOR DESCRIPTION ...4
2.1 OVERVIEW ... 4
2.2 SINGLE-TRIP EXAMPLE.. 4
2.3 CELLULAR AUTOMATA.. 6
2.4 TRAFFIC MICROSIMULATOR OUTPUT .. 9

3. ALGORITHM...11
3.1 OVERVIEW ... 11
3.2 PLACING TRAVELERS AND VEHICLES.. 11
3.3 UPDATING TRAVELER LOCATIONS .. 14
3.4 TRAFFIC DYNAMICS... 16
3.5 TRANSIT ... 20
3.6 EXITING FROM PARKING PLACES... 21
3.7 MOVEMENT CHECK/INTERSECTIONS ... 21
3.8 PREPARING FOR A TIMESTEP.. 27
3.9 CLEANING UP AFTER A TIMESTEP ... 27
3.10 SUPPORTING PARALLEL COMPUTATION .. 28
3.11 TRANSPORTATION NETWORK PARTITION .. 28
3.12 DISTRIBUTED LINKS AND BOUNDARY INFORMATION FLOW ... 29

4. SIMULATION OUTPUT FILES ...37
4.1 OVERVIEW ... 37
4.2 FILE FORMAT ... 37
4.3 TRAVELER EVENT .. 37
4.4 SNAPSHOT DATA.. 42
4.5 SUMMARY DATA.. 44
4.6 OUTPUT FILTERING .. 47
4.7 UTILITY PROGRAMS... 48
4.8 FILES .. 49
4.9 CONFIGURATION FILE KEYS .. 49

APPENDIX A: CONFIGURATION FILE KEYS ..51

APPENDIX B: CONFIGURATION KEYS FOR SNAPSHOT OUTPUT........................55

APPENDIX C: CONFIGURATION KEYS FOR EVENT OUTPUT..56

APPENDIX D: CONFIGURATION KEYS FOR SUMMARY OUTPUT ..57

APPENDIX E: DEFAULT OUTPUT CONFIGURATION KEYS...................................58

APPENDIX F: CA ERROR CODES..59

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 ii

APPENDIX G: OUTPUT REPRESENTATION ERROR CODES...61

CHAPTER FIVE: INDEX..62

Chapter Five: Figures

Fig. 1. This graphic shows what data go in and what data come out of the Traffic

Microsimulator... 3
Fig. 2. Shown from the perspective of the middle peach-colored car, the gap (labeled “1”

in the figure) between vehicles determines accelerations and influences lane changes.
The gaps (2 and 4 for left-lane change, 6 for right-lane change) to vehicles in other
lanes also influence lane changing. The distance to the intersection (3) determines
the relative importance of changing lanes. The gaps (4, 5, and 6) to upstream
vehicles from a parking facility determine whether vehicles can exit the parking
facility... 6

Fig. 3. This figure shows the order of execution of processes involving vehicles in each
timestep... 8

Fig. 4. The various types of Traffic Microsimulator output. Depicted in this figure are
traveler events, snapshot data, and summary data. ... 10

Fig. 5. A flow chart of the processes and data structures involved in loading vehicles and
travelers into the Traffic Microsimulator. Vehicles flow through the dotted lines;
travelers flow through the solid lines, and both flow through the dot-dashed lines. . 12

Fig. 6. This figure shows interactions among objects during a timestep. Travelers flow
along blue lines; vehicles with travelers along green lines. 15

Fig. 7. This graphic shows vehicle behavior at turn pocket lanes.................................... 19
Fig. 8. This figure shows the intersection entry interfering lane gap............................... 24
Fig. 9. A graphic representation of a transportation network partition........................... 29
Fig. 10. This figure shows a distributed (split) link. ... 30
Fig. 11. The rectangular (red) boxes show information flow in a distributed version of the

Traffic Microsimulator. .. 32
Fig. 12. Initialization message traffic. .. 33
Fig. 13. The top part of this figure shows the simulation message traffic. The set of

messages in the box is repeated once for every timestep up to the number of steps in
the sequence. The lower part of this figure shows termination message traffic. 33

Fig. 14. Modifications to the processes enclosed in the dashed box support overlapping
computation. Communication computation on local edges (in green) takes place
while a CPU waits for information about shared edges (in blue). 35

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 iii

Chapter Five: Tables

Table 1. Traffic controller states and corresponding actions. 23
Table 2. Traveler event record fields. ... 37
Table 3. Vehicle snapshot data record fields. ... 42
Table 4. Intersection snapshot data record fields. ... 43
Table 5. Traffic control snapshot data record fields. .. 44
Table 6. Link travel times summary data field records. ... 45
Table 7. Link densities summary data record fields.. 46
Table 8. Link velocities summary data record fields... 46
Table 9. Link energy summary data record fields... 47
Table 10. Node specification fields. ... 48
Table 11. Link specification fields. .. 48
Table 12. Value filtering operators.. 48
Table 13. Simulation output library files.. 49
Table 14. Configuration file keys... 51
Table 15. Configuration file keys for snapshot output. ... 55
Table 16. Configuration file keys for event output. ... 56
Table 17. Configuration file keys for summary output. .. 57
Table 18. Default output configuration file keys.. 58
Table 19. CA error codes.. 59
Table 20. Output representation error codes. .. 61

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 1

Chapter Five—Traffic Microsimulator

1. INTRODUCTION

1.1 Overview

The Traffic Microsimulator module simulates the movements and interactions of
travelers in a metropolitan region’s transportation system. Using a trip plan provided by
the Route Planner, each traveler attempts to execute the plan on the transportation
system. The combined traveler interactions produce emergent behaviors such as traffic
congestion.

The Traffic Microsimulator simulates

• intermodal travel plans,

• multiple travelers per vehicle,

• multiple trips per traveler, and

• vehicles with different operating characteristics.

Emphasis was initially placed on roadway transportation because of its high use,
complexity, and importance to air quality. The roadway network includes freeways,
highways, streets, ramps, turn pocket lanes, and intersections (with and without traffic
signals). Drivers executing trip plans accelerate, decelerate, turn, change lanes, pass, and
respond to other vehicles and signals.

Using a cellular automata (CA) approach, the Traffic Microsimulator provides the
computational speed necessary to simulate an entire region at the individual traveler
level. The CA approach provides a means to simulate large numbers of vehicles and
maintain a fast execution speed.

Each link in the transportation network is divided into a finite number of cells. At each
timestep of the simulation, each cell is examined for a vehicle occupant. If a vehicle is
present in the cell, the vehicle may be advanced to another cell using a simple rule set. To
increase fidelity, we would decrease the cell size, thus adding vehicle attributes and
expanding the rule set results in slower computational speed.

We evaluate the fidelity and performance limits of the Traffic Microsimulator to establish
the computational detail that supports the fidelity necessary to meet analysis
requirements.

The sheer number of travelers and the level of detail in the microsimulation require that
we use multiple CPUs where available. The Algorithm section of this chapter provides an
explanation of the information flows and scheduling required to support parallel

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 2

computing. The following sections present an overview of the simulation as it could be
carried out on a single CPU.

Step One A representation of the transportation network is read in. This
representation is very similar to a detailed street map; it includes a
number of lanes, turn pockets, merging lanes, turn signals, and so on.
Vehicles traveling along streets in the road network are simulated in
detail. In addition to the streets, there are several kinds of accessories that
represent parking lots, activity locations, and transit stops, all of which
act like buffers for travelers who are not in a vehicle traveling on a street.

Step Two Each vehicle’s type and initial location are read in. Once this is complete,

each traveler’s plans are read in (as needed).

Step Three Travelers are placed on the network and are allowed to travel from their
point of origin to their final destination. For non-simulated modes, this
movement is simple—a traveler is removed from the buffer in one
accessory and placed in the buffer on another, with a new departure time
reflecting the trip’s estimated duration.

Vehicles move from one grid cell to another by using a modified CA
approach. Modifications in this approach support lane changing and plan
following for each vehicle until it reaches the end of a link. There the
vehicles wait for an acceptable gap in traffic or for protection from a
signal before they move through the intersection onto the next link. This
continues until each vehicle reaches its destination, where it is removed
from the network.

1.2 Traffic Microsimulator Major Input/Output

Fig. 1 provides an overview of the input and output involved with the Traffic
Microsimulator. At a minimum, TRANSIMS Network information must include

• the location of streets and intersections,

• the number of lanes on the streets,

• the manner in which the lanes are connected,

• some parking locations on the streets, and

• a collection of activity locations.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 3

Traffic
Micro-

Simulator

Transit Data
route paths in network
schedule of stops
driver plans
vehicle properties (e.g.
starting location)

Network Data
nodes
links
lane use and connectivity
intersections (signs and
signals)
activity locations
parking
transit stops

Traveler Plans

Traveler Events
traveler id, trip id, leg id
time, location
inconvenience measures
anomalies
events

Summary Data
link travel times
link/lane densities
turn counts

Vehicles Snapshot Data
vehicles on links
vehicles in intersections
traffic controls
vehicle sub-populations

Fig. 1. This graphic shows what data go in and what data come out of the Traffic
Microsimulator.

Some studies benefit from, or require more, detailed information about the network. For
example, the Traffic Microsimulator is capable of using turn pockets and merge lanes,
lane-use restrictions (such as high-occupancy-vehicle lanes), turn prohibitions, and speed
limits. Each intersection has a controller (examples include a stop or yield sign, a traffic
signal, or even a set of coordinated traffic signals).

Another type of beneficial network information consists of a list of transit stops serviced
by each transit route. The actual transit schedule is encoded in the travel plans of transit
drivers. Transit drivers stop to pick up or drop off passengers at transit stops.

The Traffic Microsimulator must have a complete description of each traveler’s
transportation plans. A plan is broken down into a sequential set of trips, which must
begin and end at an activity location (such as home, work, or shopping center). A trip is
further decomposed into a set of unimodal legs. A traveler can use only a single mode of
transportation on a leg. Accordingly, several legs are chained together to form a single
trip.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 4

2. TRAFFIC MICROSIMULATOR DESCRIPTION

2.1 Overview

As a simulated day progresses, each person follows a predefined plan to move from one
activity to the next by using combinations of modes, such as walking, driving a vehicle,
and riding in a (private or public) vehicle. The Route Planner provides a link-by-link
travel plan of the traveler, including the mode of travel.

All TRANSIMS vehicles are simulated in sufficient detail to include driving on roads,
stopping for signals, accelerating, decelerating, changing lanes, stopping to pick up
passengers, and so on. Mode changes (e.g., from walking to car or to transit) are
explicitly simulated based on information contained in the traveler’s plan.

Vehicles follow a simple set of rules that guarantee no collisions will take place.
Phenomena such as reaction times and limited visibility are not simulated explicitly.
However, the effects of these phenomena are simulated by the values of parameters used
in the driving rules so that the fundamental flow-density diagram matches real, observed
traffic.

The simulation can estimate the impact of hypothetical changes on quality of service. It
provides answers to questions such as the following:

• If a proposed highway were built, what would be its effects on traffic patterns?

• How would a change in transit schedules affect riders?

• Can changing an intersection’s traffic signals alleviate congestion?

• Are there common demographic characteristics of the subpopulation most affected by
a particular infrastructure change?

The Traffic Microsimulator’s analytical power resides in its ability to aggregate the
results of millions of interactions within the transportation system. The following sections
focus on the level of detail used to simulate a travel plan.

2.2 Single-Trip Example

The following example consists of a six-leg multimodal work-to-home trip. It begins and
ends at activity locations coded in the TRANSIMS networks.

Leg 1: walk from activity location W to bus stop X, where W is the work activity
location and X is a bus stop in the network description.

Leg 2: take route Y to bus stop Z.

Leg 3: walk to parking lot P.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 5

Leg 4: drive to day care at activity location D.

Leg 5: drive (with one passenger) to parking location P2.

Leg 6: walk to activity location H (home).

2.2.1 Walking Legs

For walking legs, TRANSIMS does not explicitly microsimulate the second-to-second
locations of pedestrians. The traveler arrives at the destination at a simulation time
computed by adding the delay time (contained in the plan) to the start time for the walk-
mode leg. No additional information is required or generated for walk-mode legs.

2.2.2 Bus Legs

Bus-leg plans require one piece of additional information: the acceptable route. The
precise itinerary of the bus the traveler gets on is determined by the driver’s plan. The
traveler simply boards the bus at a bus stop and rides it until his or her desired stop is
reached, at which point he or she exits the bus.

The microsimulation explicitly represents bus loading and unloading. Resource
constraints are observed, such as vehicle capacity and transit stop capacity. If a bus is full
when it reaches the bus stop, a traveler is not permitted to board and will wait for the next
bus on the same route. With this level of detail, it is easy to determine how many
passengers cannot find space on the bus or how many minutes a traveler must wait for a
bus.

2.2.3 Parking Lot

After getting off the bus, the traveler must walk to the parking lot. In this instance, the
parking lot is where the traveler left his or her private vehicle. This walking leg is
handled as previously described.

2.2.4 Driving Legs

Upon arriving at the parking lot, the traveler is associated with a specific vehicle, which
either must have been left in the parking lot earlier in the simulation or placed there
during initialization.

The traveler and car exit the parking lot and enter the traffic network. The traveler’s plan
specifies exactly which turns he or she will take until he or she arrives at the daycare
center. At this point, the traveler waits until the passenger enters the vehicle. The
passenger’s plan will specify what vehicle to ride in, and the passenger will be waiting
for this vehicle to arrive. The driver’s plan specifies how many passengers to pick up.
Once again, the driver re-enters the transportation network, completing the remainder of
the planned trip.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 6

2.2.5 Realistic Simulation

As described above, a transit schedule is implemented by providing plans for each transit
driver. Like other travelers, a driver can switch vehicles, switch routes (with or without
switching vehicles), and take layovers of prescribed duration or ending time at specific
control points.

The Traffic Microsimulator enforces physical constraints—travelers cannot be in two
places at once, and they cannot create vehicles. Information in the plan file initiates and
places travelers in their initial start locations, whereas information in the vehicle file
places vehicles in their initial locations.

2.3 Cellular Automata

Cellular automata simulation yields vehicle movement. Each roadway section is divided
into grid cells, each of which is one lane wide and 7.5 meters long (see Fig. 2). Each cell
contains either a vehicle (or a part of one) or is empty.

Fig. 2. Shown from the perspective of the middle peach-colored car, the gap (labeled “1”
in the figure) between vehicles determines accelerations and influences lane changes.
The gaps (2 and 4 for left-lane change, 6 for right-lane change) to vehicles in other lanes
also influence lane changing. The distance to the intersection (3) determines the relative
importance of changing lanes. The gaps (4, 5, and 6) to upstream vehicles from a parking
facility determine whether vehicles can exit the parking facility.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 7

The simulation is carried out in discrete timesteps, each simulating one second of real
time. On each timestep, a vehicle on the network decides whether to accelerate, brake, or
change lanes in response to the occupancy of nearby grid cells. After every vehicle is
allowed to make these decisions, they are all moved to new grid cells in accordance with
their current velocity.

As part of the lane-changing procedure, transit vehicles scan nearby cells for transit stops,
which they must service. The transit vehicles examine the queue at the stop to see if
anyone is waiting for the vehicle; they also query their passengers to see if anyone wants
to get out at the stop. Finally, a transit driver’s plan may specify a departure time from
any stop—the driver must enter the stop if the scheduled departure time has not yet been
reached.

If the vehicle must stop, it either stops in the cell next to the transit stop or pulls off the
grid (depending on the type of transit stop). Passengers take a fixed time to enter or leave
the vehicle.

Each intersection has traffic-control logic that directs the entry of vehicles into the
intersection. Traffic controllers examine the traffic in each lane at the intersection. If the
intersection is clear, vehicles pass through it in a fixed amount of time and are placed on
the next roadway’s link.

Vehicles entering the roadway from parking locations or off-street transit stops can enter
any lane with a large enough gap between it and oncoming traffic. The gap must be wide
enough to ensure that, on the next timestep, no vehicles collide with vehicles entering the
roadway.

The simulation guarantees that each vehicle makes decisions based on the state of every
other vehicle in its local vicinity (i.e., five cells) at the same time. In other words, every
vehicle on the network makes its acceleration decision based only on information
available at time t, which does not include the time t+1 positions of vehicles that already
have made their acceleration decision. This parallel update scheme ensures that the
simulation results do not depend on the order in which streets in the network are updated.

To accomplish a simulation update, a single timestep is broken down into several steps
(see Fig. 3).

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 8

Update Signals

Prepare Nodes

Change Lanes

Transit

Exit Parking

Check Movement

Move

Enter Parking

Clean Up Nodes and Edges

Fig. 3. This figure shows the order of execution of processes involving vehicles in each
timestep.

Step One Update Signals
• Update traffic signals.

Step Two Prepare Nodes
• Vehicles in the intersection reserve space on their destination link (if

possible).

Step Three Change Lanes
• All vehicles are allowed to change lanes. In this step, transit vehicles

are also allowed to enter transit stops.
• To avoid possible collisions when vehicles in two lanes at time t both

try to change into the same lane, we alternate the direction of lane
changing every timestep.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 9

Step Four Transit

• Allow transit vehicles to exit transit stops.
• Allow vehicles stopped at transit stops to collect and disembark

passengers.

Step Five Exit Parking
• Vehicles at the head of a queue waiting to leave a parking location

are allowed to enter the road.

Step Six Check Movement
• Those vehicles entering intersections are marked and given

instructions from the intersection controller about the availability of
their destination link.

Step Seven Move

• Every vehicle on a grid makes its acceleration decision; all of the
vehicles are moved.

Step Eight Enter Parking

• Vehicles are allowed to exit into parking locations.

Step Nine Clean up Nodes and Edges
• Vehicles leave intersections and appear in the space reserved for them

by Prepare Nodes. Various temporary markers are removed from
the grid cells.

2.4 Traffic Microsimulator Output

The Traffic Microsimulator produces four major kinds of output. Fig. 4 shows these four
types:

• summary data (spatial and temporal),

• traveler events, and

• snapshot data.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 10

The state of each
vehicle on the
link is reported.

Snap-
shot
Data

vehicle id, time, link id, position, velocitiy, lane, status

The state
of the
traffic
control is
reported.

node id, time, phase, allowed movements

The state of
each vehicle in
the intersection
is reported.

vehicle id, time, node id, position

The
traversal
times for
vehicles
that have
traveled
the length
of the link
are summ-
arized.

Summ-
ary

Data
link id, vehicle count, sum of travel times

{
The vehicle counts and velocities in
"boxes" along the link are summarized.

link id, box position, vehicle count, sum of velocities

The traveler has
just become lost
because he/she
cannot make the
left turn he/she
planned on
making at this
intersection.
This event is
reported.

Traveler
Events

traveler id, vehicle id, time, location, event

Fig. 4. The various types of Traffic Microsimulator output. Depicted in this figure are
traveler events, snapshot data, and summary data.

Spatial summaries include data aggregated over user-defined sections of roadway defined
along street networks (e.g., densities and total flow in a 150-meter section).

Temporal summaries include data about travel times along streets at various times of day.
Almost anything that happens to a traveler can be reported as a time-stamped event in the
event output. Commonly used events include begin/end waiting at a given location (such
as a bus stop), begin/end a leg, pass through an intersection, and enter a vehicle.

TRANSIMS can produce traffic animation from snapshot files (if desired), which contain
time, position, and velocity information for each vehicle in the simulation. These files can
be also used to recover data that have not already been provided in the summary data
files. For instance, if a new study requires the average gap between vehicles, it can be
computed from snapshot data.

Dumping out the snapshot data for a 24-hour simulation of a major metropolitan area
creates extremely large files. Users are allowed to restrict output to smaller portions of
the network and specific times during the simulation, as well as to select only a few
desired fields or only those records that meet certain criteria. For example, a user may
choose only specific events (such as beginning a leg), particular travelers, or vehicles
traveling above a given speed. The sampling rate and reporting frequency for each data
type are controlled by user-selected parameters. For more information, see the Output
System documentation.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 11

3. ALGORITHM

3.1 Overview

The procedures invoked during each simulation timestep can be placed into one of five
broad categories:

1) placing travelers and vehicles,

2) updating the location of each traveler and vehicle,

3) preparing for a timestep,

4) cleaning up after a timestep, and

5) supporting parallel computation.

The following sections address these five procedures.

3.2 Placing Travelers and Vehicles

Fig. 5 shows the processes and data structures involved in loading travelers and vehicles
into the Traffic Microsimulator.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 12

Plan File(s)

Time index Traveler index

Local?
Active?

No
Simulated?

In progress?

Parking
Lot

Transit
Stop

Grid

Intersection

Arrived
Travelers

Interpolate Local?

Migrating
Travelers

Read Plans

No

No

Vehicle File(s)

Vehicle index

Initialize Vehicles

Destination
 Local?

No

No

Vehicle Prototype
File

Fig. 5. A flow chart of the processes and data structures involved in loading vehicles and
travelers into the Traffic Microsimulator. Vehicles flow through the dotted lines;
travelers flow through the solid lines, and both flow through the dot-dashed lines.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 13

The vehicle, vehicle prototype, and transit route files contain all of the information
required by the Traffic Microsimulator in addition to the network files (not shown in Fig.
4). Vehicle and plan files are accessed through an index, which will be generated from
the appropriate file if it does not already exist. Note that an index can refer to more than
one data file. Furthermore, there may be a separate index for each processor (if the
configuration file key CA_USE_PARTITIONED_ROUTE_FILES is set).

Traveler plans (i.e., legs of a plan) are read using the index sorted by expected departure
time until all plans departing before or on the current simulation step have been read. In
addition, the IDs of “hibernating” travelers (those who have already executed one leg of
their plan and are waiting to depart on another) are popped off the queue of Arrived
Travelers.

Each hibernating traveler carries along a minimal required information set that consists of

• traveler ID,

• current trip and leg ID, and

• a set of state flags used in maintaining states required by the output system.

To minimize memory requirements, other non-essential information is deleted from
memory while a traveler hibernates. To find the next leg for each of the arrived travelers,
the Read Plans process uses an index into the plan file that is sorted by traveler ID. Each
plan must pass two tests before the traveler is placed onto the transportation network:

1) It must be “local,” meaning that its origin must be an accessory that is a part of the
network under the control of the CPU. If the simulation uses only one slave
(CA_SLAVES is set to 1), everything is local.

2) It must be “active,” meaning that (1) its expected arrival time must be after the
simulation start time, and (2) its departure time must be before simulation end time.
The following configuration file keys define the simulation start and end times:
CA_SIM_START_HOUR, CA_SIM_START_MINUTE, CA_SIM_START_SECOND and
CA_SIM_STEPS.

If the plan calls for a non-simulated mode of travel (activity, walk, or bicycle) and the
destination is local, the process places the traveler in the Arrived Traveler queue with a
departure time specified by the plan. For example, the plan may say to use the later of a
10-minute duration or a specific time (e.g., 8:10 a.m.).

The simulation will add ten minutes to the current simulation time, compare it to 8:10
a.m., and place the traveler into the queue with a departure time equal to the later of the
two. If the destination is not local, the traveler must migrate to another CPU, where he or
she will be placed into the Arrived Traveler queue for that CPU.

If the traveler is using a simulated mode of transportation (anything involving a vehicle),
either as a passenger or a driver, and the plan is not in progress (i.e., its departure and
arrival times do not straddle simulation start time), the traveler is placed in a queue in his
or her origin accessory. This could be either a transit stop or a parking location. No

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 14

travelers will be placed in activity locations because the simulated transportation modes
do not have paths to or from such locations.

It is desirable for the simulation to reach normal traffic flow conditions as rapidly as
possible. To facilitate this, vehicles whose driver’s plans are in progress are placed on the
roadway when the Traffic Microsimulator is initialized. This is based on where the
driver’s plans predict they will be at the simulation starting time.

Once a plan’s geometric length is estimated, a link is selected by interpolating along the
path according to the duration of the leg (as estimated by the Route Planner). The length
is difficult to determine if the plan is not wholly contained within the part of the network
local to the CPU, so this process is not guaranteed to produce the same initial condition
when the number of CPUs varies.

If the interpolation process determines that a traveler should be placed on a non-local
section of the network, it will add the traveler to the list of migrating travelers. Otherwise,
the cell position and lane are randomly selected.

If the selected cell is already occupied, the grid is searched upstream for an available cell.
If all cells upstream are occupied, the grid is searched downstream for an unoccupied
cell. If all cells on the link are occupied, a warning message is printed and the vehicle is
deleted.

No attempt is made to find an available cell on an adjacent link. Because interactions
between vehicles are not taken into account, this procedure does not produce the same
distribution of traffic that would be found by starting earlier and letting the simulation
evolve to the same time.

Furthermore, transit passengers are not placed in transit vehicles, but rather they are
placed at their destinations. If this interpolation scheme does not work satisfactorily, the
user should start the simulation at an earlier time.

3.3 Updating Traveler Locations

After reading in and placing travelers, the Traffic Microsimulator executes their plans
one step at a time. Each step involves several substeps in the order given in Fig. 3. The
major data structures involved and their interactions during a timestep are sketched in
Fig. 6.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 15

Grid

Intersection

Arrived
Travelers

Migrating Travelers Migrating Vehicles

Exit Transit

Transit Stop

Enter Transit

Parking Lot

Exit Parking

Exit Transit Stop Enter Parking

Enter Vehicle

Exit Vehicle

Enter Transit Stop

Read Plans

Fig. 6. This figure shows interactions among objects during a timestep. Travelers flow
along blue lines; vehicles with travelers along green lines.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 16

3.4 Traffic Dynamics

Interactions of individual vehicles on the transportation network produce traffic dynamics
in the Traffic Microsimulator. To determine the position of vehicles on the roadway, a
rule set is applied that governs movement and lane changes. This rule set must be as
simple as possible to maintain the computational speed necessary for updating positions
of the large number of vehicles that could be present in a regional traffic
microsimulation.

The rule set imposes a no-collision strategy on the vehicles. Vehicle interactions based on
the rule set combine to produce emergent driver behavior. Traffic dynamics require that,
for any vehicle v at time t, all position change calculations must be based on other vehicle
positions at time t, not at time t+1.

3.4.1 Lane Changes

During the timestep, we examine each vehicle and determine if it will change lanes. To
produce realistic traffic dynamics, lane change and movement must take place on the
same timestep.

Left and right lane changes are made on alternating timesteps to prevent collisions and to
ensure that gap calculations are based on vehicle positions at time t, not t+1. Multilane
roadways are processed from left to right when making left lane changes and from right
to left when making right lane changes. Vehicles are not allowed to change into a lane if
it would violate lane use or HOV restrictions.

A vehicle changes lanes for two reasons:

1) to pass a slower vehicle in the current lane, and

2) to make turns at intersections to follow its plan.

A vehicle that needs to make a turn at the next intersection (as part of its plan) will
consider changing lanes when it is within a set distance from the intersection. As the
vehicle approaches the intersection, the urgency to change into a lane increases linearly
as the vehicle approaches the intersection (configuration file key
CA_PLAN_FOLLOWING_CELLS). Any vehicles that fail to make the required lane changes
are marked as off-plan.

3.4.2 Passing Lane Change

Passing lane changes are based on three gap calculations (see Fig. 2):

1) gap in the current lane (Gc),

2) gap forward in the new lane (Gf), and

3) gap backward in the new lane (Gb).

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 17

If these gaps satisfy the following constraints, a lane change will be attempted with
probability CA_LANE_CHANGE_PROBABILITY:

1) V + 1 > Gc (i.e., a vehicle ahead in the current lane is preventing acceleration)

2) Gf > Gc (i.e., the gap in the neighboring lane is larger than in the current lane)

3) V ≤ Gf (i.e., the gap in the neighboring lane is large enough to maintain the vehicle’s
current speed)

4) Gb ≥ VGlobalMax (i.e., if the lane change were made, there would not be a collision).

VGlobalMax is used in constraint three rather than the actual speed of the other vehicle for
efficiency. Nothing in the lane-changing or CA rules depends on the velocity of any
vehicle besides the one under consideration.

3.4.3 Plan-following Lane Change

Acceptable approach lanes that allow a vehicle to transition to the next link in its plan are
determined when a vehicle enters a link. A preferred lane is also selected. The preferred
lane may change as the vehicle changes lanes. Plan-following considerations are
introduced into lane-change calculations when a vehicle is within a set distance from an
intersection (DPF). The bias to make a lane change increases as the vehicle nears the
intersection. The bias also increases linearly with the number of lanes away from an
acceptable lane.

If the vehicle is already in an acceptable approach lane, the vehicle is biased to stay in the
correct lane and ignore lane changes to pass slower vehicles (i.e., lane changes based on
gaps).

Lane changes are controlled by introducing an additional parameter to the lane-change
calculations. This parameter, W, is initially set to zero.

If a vehicle is within the DPF but is not in an acceptable approach lane, W is set based on
the distance between the vehicle and the intersection (DI), and the minimum number of
lane changes n it will take to reach an acceptable lane,

I
PF

Max
Max D

Dn
VVW ⋅

⋅
−−=)1(

Note that as DI goes from n ⋅ DPF to 0, W goes from 1 to VMax. The parameter W is used to
gradually relax constraints 3 and 4. When W reaches V, constraint 3 is completely
removed; when W reaches VMax , constraint 4 is removed.

Because only one type of lane change is made during a timestep, the type of lane change
needed (left/right) must be the same as the type of lane change (left/right) calculated
during this timestep.

It is possible for a vehicle to have more than one approach lane that is acceptable for
plan-following. If the vehicle is in an acceptable lane and the new lane (left/right) is also

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 18

an acceptable approach lane, W = 0, which allows lane changes based on gaps. If the new
lane is not acceptable, no lane change is allowed, unless the vehicle must cross the new
lane to reach an acceptable one.

3.4.4 Special Cases

This section outlines several special cases involving lane changes.

3.4.4.1 Mass Transit

The algorithm handles mass transit vehicles separately because they must not become
off-plan and because they must have priority in making lane changes. In addition, mass
transit vehicles are allowed to enter transit stops during lane changes.

Each mass transit vehicle enters a transit stop if

• it is not full and there is a queue of people waiting at the stop,

• any passenger wishes to get off at the stop, or

• the driver’s plan includes a scheduled departure time for this step and that time has
not yet passed.

The vehicle either will be left occupying the grid cells or taken off the grid entirely,
depending on the style of transit stop (e.g., STATION or STOP). If it is left on the grid, it
will attempt to get into the rightmost lane. The vehicle’s speed constraint is set to 0 while
it is in the STOP style.

3.4.4.2 Merge Lanes

Merging is handled by using the lane-change logic. Vehicles in merge lanes are forced to
make lane changes in the same direction as the merge direction. In some cases, a lane can
have a merge pocket and a turn pocket further down the lane toward the intersection. In
these cases, vehicles are prohibited from entering the lane until they are past the end point
of the merge pocket.

3.4.4.3 Turn Pocket Lanes

The Traffic Microsimulator imposes speed restrictions on vehicles attempting to enter a
turn pocket lane from an adjacent lane. These restrictions prevent movement of the
vehicle past the start of the turn pocket, thus causing the vehicles to queue on the adjacent
lane until it is a possible to execute a lane change into the turn pocket lane.

In Fig. 7, the vehicle in Lane 2 needs to make a left turn at the next intersection. The left
turn pocket (Lane 1) has no vacant cells. At time t, the vehicle’s speed is 3, which will
move the vehicle past the start of the turn pocket. The vehicle’s speed is constrained to 2
(the distance from the vehicle’s current position at time t and the start of the turn pocket).

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 19

Time t t+1 t+2

V=3

V=0V=2

Fig. 7. This graphic shows vehicle behavior at turn pocket lanes.

At time t+1, the vehicle has moved down Lane 2 to the starting cell of the turn pocket. A
lane change into the turn pocket is not possible because other vehicles occupy all of the
cells. By constraining the speed to 0, the vehicle is prevented from traveling further down
Lane 2. At time t+2, the vehicle remains in Lane 2 with speed 0. The vehicle’s speed will
remain constrained to 0 until a lane change into the turn pocket is possible.

3.4.4.4 Look Ahead Across Links

The Look Ahead capability was added to the microsimulation to address the problem of
vehicles becoming off plan on short congested links when plan-following lane changes
cannot be made quickly enough.

With Look Ahead disabled (i.e. CA_LOOK_AHEAD_CELLS = 0), the microsimulation
determines the desired approach lane to the next node in the plan when the vehicle first
enters a link by considering the lane connectivity at the next node to the following link.
On long links or uncongested links this works fine. However on short multi-lane links,
particularly when they are congested, a vehicle entering in a lane far from its required
approach lane may not be able to maneuver into the required lane quickly enough and
becomes off plan.

With Look Ahead enabled, distance from an upcoming turn is taken into account to
discover a downstream restriction on approach lane earlier, rather than waiting until entry
to the link that culminates in a turn. Ideally, the decision would also take into account
other factors such as local congestion, but this would be too computationally expensive.

For reasons of computational efficiency, the distance criterion is applied very coarsely. It
remains desirable to compute the approach lane only once per vehicle upon entry to a link
rather than continuously examining the current distance to the upcoming turn and
performing the calculation at the precise time the criterion is met. Therefore, if

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 20

CA_LOOK_AHEAD_CELLS > 0, at least one additional step beyond the next step in the
plan will be examined to see whether that plan step contains a turn with a lane
requirement that influences the desired approach lane on the current link. The number of
additional plan steps that are examined is determined by summing the link lengths for
subsequent plan steps until the accumulated length exceeds the distance prescribed by
CA_LOOK_AHEAD_CELLS.

When there is only one acceptable approach lane on the current link, the Look Ahead
calculation is not performed. It is only when multiple approach lanes are acceptable that
the Look Ahead computations may show that a particular choice for this link might better
position the vehicle on a subsequent link. Also note that Look Ahead is only done on
links local to the CPN containing the current node.

The Look Ahead calculation operates by working backwards from the final link
determined by the distance criterion to the current link. Consider the simple case
involving three links and two nodes. First, the approach lane(s) acceptable at the second
node are determined by examining connectivity to the third link. Next, all links on the
first link that connect to the acceptable lanes on the second link are determined. If this
results in only one lane that connects through, it becomes the preferred approach lane to
the first node. If there are no lanes at the first node with connectivity to the approach lane
at the second node, the algorithm is repeated trying to find connectivity to a lane adjacent
to the final approach lane. If there is connectivity to one adjacent lane, it becomes the
preferred approach lane to the first node. If there is no connectivity to an adjacent lane
either, Look Ahead is not helping and the procedure defaults to allowing any approach
lane at the first node that connects to the second link. Finally, if Look Ahead identifies
multiple acceptable approach lanes to the first node, a preferred one is selected according
to the criteria in Section 3.4.3.

For larger values of CA_LOOK_AHEAD_CELLS, the algorithm proceeds as above, always
starting by considering the connectivity at the end node of the most distant link being
considered and working backwards toward the current link in the plan.

3.5 Transit

While a vehicle is in a transit stop, the transit-stop object contains a pointer to the vehicle
(implying that the capacity of stops is 1). The object also contains queues of travelers
waiting to board transit vehicles. There is a separate queue for each route ID.

If there is a transit vehicle currently servicing the stop and it has been there for at least the
number of timesteps specified by the configuration file key
CA_TRANSIT_INITIAL_WAIT, travelers are allowed to enter and exit the vehicle. Entry
and exit can take place simultaneously, but the mean rate at which travelers enter and exit
is set by the configuration file keys CA_ENTER_TRANSIT_DELAY and
CA_EXIT_TRANSIT_DELAY, respectively.

Travelers are popped off the traveler queue until it reaches either the maximum number
of travelers who can board in a single timestep or a traveler whose next departure time is
later than the current simulation time.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 21

If a traveler’s plan calls for him or her to take the route that this vehicle is servicing, and
the number of passengers already aboard does not exceed the capacity for this type of
vehicle specified by the vehicle prototype file, he or she will enter the vehicle.

Travelers leaving the vehicle have completed a leg of their plan; they are placed in the
Arrived Travelers list to trigger the Read Plans process to find the next leg of their plans.
If all of the passengers exiting at this stop have been taken care of and either the bus is
full or no more passengers are waiting to board, the vehicle is placed back on the grid (if
necessary) and its speed constraint removed.

3.6 Exiting from Parking Places

A parking place accessory has a list of IDs for the vehicles present (either because they
began the simulation there or they have arrived during the course of the simulation). It
also has a queue of travelers and their associated plans. This procedure handles each
traveler in the traveler queue whose departure time has arrived.

A vehicle whose ID is on the list will have been instantiated in the simulation only if it
has arrived here from somewhere else. Otherwise, a new vehicle with this ID must be
created using the type implied by the traveler’s plan.

A traveler cannot leave unless his or her vehicle is present. If the vehicle is not there, the
traveler’s departure time is incremented and he or she is replaced in the queue.

Depending on his or her plan, the traveler is added to the vehicle as either a driver or a
passenger. If the driver has not yet been added to the vehicle, the next traveler is popped
off the queue. Otherwise, the driver determines how many passengers are anticipated.
(This information is contained in the driver’s plan, along with the IDs of the expected
passengers.)

If any passengers are missing, the driver is placed back in the queue so that the vehicle
will try to leave again on the next timestep. If the driver and all passengers are present,
the vehicle attempts to find room on the grid in any lane, not in the boundary region (as
described in “Distributed Links and Boundaries Information Flow”), traveling at the
speed limit.

Once the appropriate grid for the planned direction of travel is determined, the grid is
searched upstream for a distance of VMax cells. If a vehicle is found in a lane, that lane
and the adjacent lanes are eliminated from consideration. Thus, the maximum number of
vehicles that can leave a lot in one timestep is the number of lanes on the grid.

All lanes are searched and if a lane is available, the vehicle is placed on the lane at the
cell corresponding to the parking place location. If there is no room on the grid, the driver
is returned to the traveler queue.

3.7 Movement Check/Intersections

This procedure handles vehicles that leave a link and pass through an intersection. Upon
arriving at an intersection, a vehicle’s destination lane on the next link is determined. The

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 22

current lane is selected if it is allowed on the next link; otherwise, a lane is picked at
random from the set of allowed lanes. This set takes into consideration lane use and HOV
restrictions.

Unsignalized intersections with stop/yield traffic controls require vehicles to consider
oncoming traffic before they can move onto the next link. The vehicles use the gap
between the oncoming vehicles and the intersection to determine if they can enter the
intersection. If the gap is acceptable, the vehicle traverses the intersection and arrives on
the destination link during a single update step in the microsimulation.

Vehicles at signalized intersections have different behaviors from those at unsignalized
intersections. When a vehicle enters an intersection, it is placed in a queued buffer, where
it resides for a specified time before exiting to the destination link. The time that the
vehicle spends in the queued buffer models the time necessary to traverse the
intersection. Vehicles with permitted but not protected movements from the intersection
traffic control must consider the oncoming traffic before entering the intersection. The
configuration file key for this is CA_INTERSECTION_WAIT_TIME.

To enter an intersection, a vehicle must satisfy six conditions, all of which are outlined
below.

Condition One Be the first vehicle on the link in the current lane going toward the
intersection. Only one vehicle per lane is allowed to enter the intersection
in a single timestep.

Condition Two Have a current speed greater than or equal to the number of empty cells
between the vehicle and the end of the link.

Condition Three Satisfy the conditions of the traffic control at the intersection. The state
of the traffic control indicates if a vehicle must consider oncoming traffic
gaps.

Condition Four Ensure that there is an acceptable gap between the vehicle and oncoming
traffic.

Condition Five Ensure that the intersection buffer for the current lane is not full.

Condition Six Ensure that the destination cell in the destination lane on the destination
link is unoccupied.

A vehicle will attempt to enter an intersection if its current speed is greater than or equal
to the number of empty cells between the vehicle and the end of the link. The state of the
traffic control at the intersection is an important factor in determining if a vehicle can
enter the intersection.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 23

To enter a signalized intersection, the traffic controller must indicate a permitted,
protected, or caution movement for the current lane and the desired movement. At an
unsignalized intersection, stop and yield signs impose conditions on intersection entry.

The traffic controller state may require that the distance between the intersection and
oncoming traffic (interfering lane gap) meet certain criteria before the vehicle can enter
the intersection. Table 1 shows the traffic controller states and their corresponding
actions.

Table 1. Traffic controller states and corresponding actions.

Traffic Controller State Action Conditions
S* - Protected Proceed None
S – Wait Stop None
S – Permitted Evaluate GI on IL (Interfering Lanes)
S – Caution Proceed None
U** -None Proceed None
U – Stop Wait

Evaluate
Stopped < 1 Timestep
GI on IL, Stopped ≥ 1 Timestep

U – Yield Evaluate GI on IL

 * S = Signalized intersection
** U = Unsignalized intersection

The interfering lane gap (GI) consists of the distance between the oncoming vehicle and
the intersection. The oncoming vehicle must be on a link connected to the intersection,
which limits the look-back distance for oncoming traffic to the length of a single link.

The oncoming vehicle’s speed (VOV) and the Gap Velocity Factor (GVF), specified by the
configuration file key CA_GAP_VELOCITY_FACTOR) are used to calculate the Desired
Gap.

Desired Gap (Gd) = VOV*GVF

On links in which the desired gap is greater than the number of cells on the link, the
number of cells on the link is used as the desired gap.

GI ≥ Gd, Interfering Gap Acceptable

GI < Gd, Interfering Gap Not Acceptable

Note that for an oncoming vehicle with speed of 0, Gd will be 0, which allows movement
through intersections in congested conditions in which both Gd and GI = 0. If the
interfering gap is not acceptable, the vehicle is at a stop or a yield sign, and the
interfering lane is also controlled by a stop/yield sign, then there will be a deadlock
resolution in which the vehicle will proceed with probability determined by the value of
the configuration file key CA_IGNORE_GAP_PROBABILITY.

As shown in Fig. 8, a vehicle can enter the intersection only when the interfering gaps are
acceptable (GI ≥ Gd).

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 24

Gap Velocity Factor = 3.0
Car 1: GI=3 Gd=3, Link 2
 GI=4 Gd=6, Link 4
GI < Gd (no intersection entry)

Link 3

Link 4

Link 1

Link 2

Car 3

Car 4, V=2 Car 1

Car 2, V=1

GI=4

GI=3

Fig. 8. This figure shows the intersection entry interfering lane gap.

If the traffic control for the intersection is signalized, the vehicle does not traverse the
intersection in the current microsimulation timestep. Signalized intersections maintain
internal queued buffers in which vehicles are placed to traverse the intersection. Each
intersection has one queued buffer for each incoming lane.

If the conditions of the signalized traffic controller have been satisfied, a vehicle must
check whether the appropriate buffer has space to receive the vehicle. (The intersection
buffer’s capacity is set by the configuration file key CA_INTERSECTION_CAPACITY.) If
this is the case, the vehicle is removed from the incoming link and is placed in the
intersection buffer for a wait period (specified by the configuration file key
CA_INTERSECTION_WAIT_TIME).

After the time period has expired, the vehicle exits from the buffer to the first cell (or Lth
cell if the vehicle has length L) on the destination link if the cell is vacant. If it is not, the
vehicle waits in the intersection buffer until the cell becomes vacant.

The buffers have a fixed size, so that if the buffer is full the vehicle cannot enter the
intersection and must wait on the link.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 25

At unsignalized intersections, vehicles can enter and exit the intersection in a single
timestep. Therefore, if the conditions of the unsignalized traffic controller have been
satisfied for intersection entry, a vacant cell on the destination link in the destination lane
must be available for the vehicle to enter the intersection. The vehicle’s current speed is
used to determine which cell to reserve on the destination link.

If the primary destination cell is unavailable, the next cell closer to the intersection is
tried. This process continues until an available cell is found or until all the cells between
the intersection and the primary destination cell are tried. A marker is placed in the
destination cell to reserve the cell.

If a vehicle successfully reserves a place in the queue or on the next link, an internal state
variable will be set to indicate that it can proceed. This variable is used during the
movement procedure to determine whether to remove a vehicle from a link or decrease its
speed. Vehicles traversing unsignalized intersections are placed on their destination link
during the cleanup procedure at the end of a timestep.

3.7.1 Off-plan Vehicles

An off-plan vehicle is one that is not in an acceptable approach lane when it is ready to
enter an intersection and thus cannot follow its assigned plan. Vehicles that have not
moved for the number of timesteps defined by the configuration file key
CA_MAX_WAITING_SECONDS also become off-plan.

The timestep when the vehicle tries to exit from the simulation is calculated using the off-
plan exit time (configuration file key CA_OFF_PLAN_EXIT_TIME). Once this is
calculated, a new destination link is selected from links connected to the vehicle’s current
lane.

New destination links are randomly selected for off-plan vehicles until the current
timestep is equal to the calculated exit timestep. Once time is reached, the vehicles are
removed from the simulation at the nearest parking place.

3.7.2 Abandon Plan

Vehicles attempting to enter an intersection (and that have not moved for a specified
period of time) abandon their plans and, if possible, select a different destination link.
The time period is defined by CA_MAX_WAITING_SECONDS.

These vehicles are marked as off-plan and are removed at the nearest parking place.
Allowing vehicles to become off-plan after a specified waiting period is necessary to
prevent traffic gridlock.

3.7.3 Movement

The movement rule is as follows: accelerate when you can; slow down if you must;
sometimes slow down for no reason. The rule is executed to update the speed and position
of each vehicle on the roadway.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 26

A gap is defined as the distance between a vehicle and the next car ahead. Each vehicle
tries to accelerate up to a desired speed if the gap is greater than the current speed. The
desired speed is limited to the speed limit posted on each link and the maximum speed for
each vehicle type and subtype (as specified in the vehicle prototype file).

If the gap is smaller than the current speed, the vehicle will slow down until its current
speed is equal to the gap, thus imposing the no-collision condition. Each vehicle also has
a random probability of slowing down. This is called the deceleration probability (PD)
(configuration file key CA_DECELERATION_PROBABILITY). Use of the deceleration
probability is essential to produce realistic traffic dynamics (such as jam waves) from
individual vehicle interactions.

To compute a vehicle’s speed (Vt+1) and the next position on a link, first compute the
speed based on the gap and the vehicle’s speed in the current timestep (Vt) as follows:

• Compute Gap

• if (Vt < Gap AND Vt < VMax)
 Vt+1 = V + At

The acceleration At is determined separately for each vehicle subtype. For autos, At is the
maximum acceleration as specified in the vehicle prototype file. For other vehicles,
acceleration is grade and velocity dependent.

Under the assumption of constant power acceleration, AMax is interpreted as the maximum
acceleration at V = 7.5 m/sec = 1 cell/timestep. Then, the velocity dependence is
A = AMax/V.

The grade dependence is handled by taking into account the acceleration caused by
gravity, A = AMax/V - gsinθ, where θ is the grade. Negative accelerations are possible,
until a vehicle reaches its “crawl speed” of 1 cell/timestep. Fractional accelerations are
handled by using the greatest integer part and adding 1 randomly. That is, an acceleration
of 1.6 cells/timestep/timestep is implemented as an acceleration of 2 (60% of the time)
and 1 (40% of the time).

Each moving automobile (Speed > 0), but not heavy vehicles, has a random probability
of decelerating in each timestep. Compute the probability and slow down if the computed
probability is less than the deceleration probability.

• if (Vt+1 > 0) and (NRand < PD)

 Vt+1 = Vt + 1

And finally, move the vehicle to its new grid position based on the new speed.

• New Cell = Current Cell + Vt+1

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 27

3.7.4 Entering Parking Places

To remove vehicles from the roadway at destination parking places, the Traffic
Microsimulator checks all of the cells in all lanes downstream from the parking place for
a distance of VGlobalMax cells.

If a vehicle is found on the last step of the current leg of its plan and with this parking
place as its destination, the vehicle is removed from the roadway. Its ID is placed onto the
list of vehicles present at that parking place.

3.8 Preparing for a Timestep

3.8.1 Update Signals

Timing tables provided for each signal are used to update them at each timestep.
Signalized traffic controls are initialized at the beginning of the simulation to the first
interval of the signal cycle’s first phase when the signal offset is 0.0. When the offset is
not zero, the signal is initialized to the phase and interval that corresponds to simulation
time 0 in the offset cycle.

3.8.2 Prepare Nodes

Find vehicles in each intersection that are ready to be ejected during this timestep.
Vehicles exit from the intersection queued buffers when their residence time in the buffer
is greater than the intersection residence time specified by the configuration file key
CA_INTERSECTION_WAIT_TIME.

Vehicles exit from the queued buffer onto the first cell in the destination lane on the
destination link. Exiting vehicles reserve their destination cell before vehicles on links
calculate movement, thus giving the vehicles exiting from intersection buffers precedence
over vehicles on the links. This procedure places a temporary vehicle marker on the next
grid for each vehicle that will leave the intersection on this timestep.

3.9 Cleaning Up After a Timestep

3.9.1 Migrate Vehicles

Any vehicle that has passed from a region of a link controlled by a CPU into a region
controlled by its neighbor must be encoded in a message and sent to that neighbor. The
Migrate Vehicles process is done on a link-by-link basis.

3.9.2 Migrate Travelers
Some travelers not in vehicles may have been placed in the Migrating Travelers list
during the timestep. The Migrate Travelers procedure encodes those travelers into
messages and passes them on to the desired CPUs, thus clearing out the list as it goes.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 28

3.9.3 Clean up Nodes

The Clean up Nodes procedure causes each intersection to eject the first vehicle in each
of its buffers into previously reserved locations on the destination link.

Vehicles are transferred from the buffers to their reserved destination cells during the
cleanup phase, which takes place after movement changes for all the vehicles are
executed. Vehicle speed does not change during intersection entry/exit at a signalized
intersection. Vehicles are placed in the first cell on the destination link with the same
velocity that they entered the intersection buffer.

3.9.4 Clean up Edges

The Clean up Edges procedure clears all temporary vehicle markers from the grids. In
addition, if the cleanup action state variable for a vehicle is eject, it places the vehicle
in the intersection buffer (if buffered; otherwise, place it directly onto the next edge).

If the cleanup action is migrate, it deletes the vehicle (which has already been sent to its
destination CPU in the migration step).

3.10 Supporting Parallel Computation

The Traffic Microsimulator runs on multiple CPUs to maximize computational speed.
Updating vehicle positions then can be done in parallel on individual CPUs. This method
is faster than a single, sequential update algorithm on transportation networks with a large
number of vehicles.

3.11 Transportation Network Partition

The transportation network is partitioned among the CPUs, with each CPU receiving a set
of nodes and links (Fig. 9). To partition the network among the CPUs, an orthogonal
bisection (OB) algorithm or the METIS graph-partitioning library can be used.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 29

Network

Subnetwork 1
CPU 1

Subnetwork 1
CPU 2

Fig. 9. A graphic representation of a transportation network partition.

METIS is a public domain package. Which algorithm is used is determined at run time by
a combination of the configuration file keys PAR_PARTITION_FILE,
PAR_USE_METIS_PARTITION, and PAR_USE_OB_PARTITION.

Both algorithms use a cost function for each node. METIS also uses a cost function for
each link. These costs can be based on the number of cells on the links attached to the
node if no other information is available. As the simulation runs, it collects information
on the amount of CPU time devoted to processing each link and node. This information
can be saved in a Run Time Measurements file, which can be used to assign costs to the
links and nodes in subsequent partitioning calculations. The configuration file keys that
control this process are PAR_RTM_INPUT_FILE and PAR_RTM_PENALTY_FACTOR. The
Run Time Measurements file is placed in the directory named by OUT_DIRECTORY in a
file named RTM_FEEDBACK_FILE.

Partitioning can be saved for later use by DistributePlans or a subsequent simulation run.
This is controlled by the configuration file keys PAR_SAVE_PARTITION and
PAR_PARTITION_FILE. If neither METIS nor OB partitioning has been requested, the
simulation will look for this partition file.

3.12 Distributed Links and Boundary Information Flow

Links that connect nodes residing on different CPUs are split in the middle (Fig. 10).
These links are distributed links. Each CPU is responsible for one-half of the link. Each

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 30

distributed link is assigned a number of active grid cells belonging to a given CPU. Such
an assignment is necessary to consistently divide links with an odd number of cells.

Fig. 10. This figure shows a distributed (split) link.

The area in the middle of the distributed links is called a boundary area. The boundary
area’s width is currently VGlobalMax (5) cells. Links shorter than
PAR_MIN_CELLS_TO_SPLIT cells will not be split. The maximum distance (forward or
backward on a link) that can be used for gap calculations is limited to the boundary width
on distributed links.

Vehicles are transferred between CPUs as they traverse these split links. Each split link
introduces a message-passing delay during the update sequence because messages must
be passed between the CPUs for vehicles that are crossing split links. Two types of
messages must be exchanged between CPUs with distributed links:

• Vehicle Migration Messages, which are messages for vehicles transferred to the other
part of the link on a different CPU.

• Boundary Exchange Messages, which are messages containing information about
vehicle positions in the boundary area of a link.

Vehicle migration messages occur for all vehicles that have traversed half the cells of a
distributed link. These vehicles must be transferred to the CPU that owns the other half of
the distributed link. All information about the vehicle, its occupants, and their plans is put
into a message and sent to the destination CPU, after which the vehicle is removed from
the originating CPU.

Upon receipt of the message, the destination CPU recreates the vehicle and travelers
using the information in the message; it then places them at the appropriate position on its
half of the distributed link.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 31

Exchange of boundary information between CPUs is called a boundary exchange.
Boundary exchange messages are necessary to correctly calculate position changes
(movement and lane changes) for vehicles in a CPU’s boundary area. Information about
vehicles in the next VGlobalMax cells (or preceding VGlobalMax cells, depending on the
direction of traffic flow) is necessary to execute the appropriate gap calculations for lane
changes and movement.

Each CPU maintains a list of its distributed links and of the CPU owners of the other half
of the links. Boundary exchanges must be conducted before lane changes and again
before vehicle movement. Each CPU initiates the exchanges at the appropriate time. Each
CPU waits until it receives all of the boundary exchange messages from neighboring
CPUs.

Comparison of Fig. 11with Fig. 3 shows how the message passing is interleaved with the
simulation update processing.

PrepareNodes

Change Lanes

Transit

Exit Parking

Check Movement

Enter parking

Clean up NodesMove

Clean up Edges

Update Signals

Send Boundaries

Receive Boundaries

 Send Boundaries
(migrate vehicles)

Migrate travelers

Receive migrating
vehicles and travelers

Send Boundaries

Receive Boundaries

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 32

Fig. 11. The rectangular (red) boxes show information flow in a distributed version of the
Traffic Microsimulator.

3.12.1 Parallel Computation Sequence and Synchronization Points

The Traffic Microsimulator, a distributed object simulation, uses a master/slave
paradigm. The master process starts the slave processes, handles the initialization
sequence, and serves as a synchronization point for the slave processes.

The slave processes do all of the work in the simulation. After initialization, each slave
process completes successive update cycles until the end of the specified simulation run.
The slave processes synchronize with the master process at the beginning of each
timestep or at the beginning of a sequence of timesteps, depending on the value of the
configuration file key CA_SEQUENCE_LENGTH (see Fig. 11). The message traffic among
the master and slaves for controlling all of these tasks is shown in Fig. 12and Fig. 13.

Distribute local network IDs

Distribute global network IDs
Node - CPU Map

Accessory - CPU Map

Initialize
Load Network

Read Initial Plans

Nodes

Remote Nodes

Local Edges

Split Edges

Slaves

Slaves

Slaves

Slaves

Slaves

Slaves

Slaves

Slaves
Interpolate VehiclesSlave Slave

Master

Master

Master

Master

Master

Master

Master

Master

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 33

Fig. 12. Initialization message traffic.

Execute Time Step / Sequence

Slave Caught Up

Simulate

Boundaries

Boundaries & Vehicles

Travelers

Boundaries

Slaves

Slave Slave

Slave Slave

Slave Slave

Slave Slave

Slaves

Terminate Output

Terminate

End Simulation

Slaves

Slaves

Master

Master

Master

Master

Fig. 13. The top part of this figure shows the simulation message traffic. The set of
messages in the box is repeated once for every timestep up to the number of steps in the
sequence. The lower part of this figure shows termination message traffic.

3.12.2 Initialization Sequence

The master process begins by reading the network information from the database,
constructing a copy of the transportation network, and constructing or reading a partition.
The master then is ready to create and initialize the following five-step slave process:

Step One Start slave processes.

Step Two Send each slave ID lists of its local nodes and links and lists of those

connected to it by distributed links.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 34

Step Three Send each slave a mapping from node IDs to CPU IDs, and optionally
(depending on the setting of the configuration file key
CA_BROADCAST_ACC_CPN_MAP) a mapping from accessory IDs to CPU
IDs.

Step Four Tell each slave to construct its transportation subnetwork from database
information.

Step Five Tell slaves to read in the initial plans, queue initial vehicles on parking
places, and initially place vehicles on the links at the given simulation
start time.

3.12.3 Simulation

After the initialization sequence is complete, the master starts the simulation by telling
the slaves to execute the first timestep. The master process waits until all of the slaves
complete execution of a fixed number of timesteps. It then sends a message to the slaves
to execute the next timestep sequence.

3.12.4 Termination

The master sends messages to the slaves that tell them to shut down the parallel I/O
system and then to exit when the requested number of timesteps has been executed.

3.12.5 Overlapping Computation and Communication

For efficiency, a parallel code should overlap communication whenever possible. This
enables a CPU to continue executing useful work while waiting for responses from other
CPUs.

The Traffic Microsimulator accomplishes this by noting which links are under a single
CPU’s control and which are shared. After sending boundary information, each CPU can
update all of its non-shared links before it must make use of boundary information
received from other CPUs. Fig. 14 shows the sequences of computation and
communication in such a modified timestep execution. If the configuration file key
CA_LATE_BOUNDARY_RECEPTION is set, the simulation will arrange computations in
this manner.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 35

Move
(local edges)

Enter Parking
(local edges

Check Movement
(shared edges)

Move
(shared edges

Enter Parking
(shared edges)

Clean up Nodes

Clean up Edges
(shared edges)

Send Boundaries

Clean up Edges
(local edges)

Check Movement
(local edges)

Send Boundaries

Receive Boundaries

Send Boundaries
(migrate vehicles)

Migrate Travelers

Receiving Migrating
Vehicles and Travelers

Receive Boundaries

Fig. 14. Modifications to the processes enclosed in the dashed box support overlapping
computation. Communication computation on local edges (in green) takes place while a
CPU waits for information about shared edges (in blue).

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 36

3.12.6 Output Collection

Slaves generate in parallel all output information from the Traffic Microsimulator. Each
slave sends a message to the master indicating what sort of information it would like to
write and how many bytes the information will require on disk.

The master collates the requests from all the slaves and responds to each, indicating an
offset into a file for writing the information. Each slave then writes its information to disk
at the indicated location. The message traffic generated by the output system is not shown
in Fig. 12 or Fig. 13clarity.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 37

4. SIMULATION OUTPUT FILES

4.1 Overview

This TRANSIMS Simulation Output subsystem collects data from a running
microsimulation and stores it for subsequent examination by the analyst or use by other
TRANSIMS software components. It provides a software layer that insulates applications
from the details of the file structure and provides great flexibility in the specification of
the data to be collected.

A parallel communication library is used to collect data in ASCII format into a single file
written by the master simulation process. No postprocessing is required with this
mechanism.

4.2 File Format

This section describes the file formats of the eight types of simulation outputs currently
implemented. All fields are described, but the filtering capability enables suppression of
any output field for which the analyst has no interest, thus resulting in smaller output
files.

Applications that read the output produced by the simulation should always use the
functions for reading. The functions provided by the output representation automatically
handle records with suppressed fields and only attempt to read the fields that were
actually written. This enables the implementation of general postprocessing applications
that need not be cognizant of the number and order of the fields written by the simulation.

4.3 Traveler Event

The Traffic Microsimulator outputs traveler event records each time an event of interest
to the analyst takes place. The simulation time interval during which to record events is
defined in the input configuration file.

Filtering capabilities are provided so that the analyst can select which of the many
potentially interesting events should be recorded. Table 2 provides a list of events that
may be of interest; these are specified in the STATUS and ANOMALY output fields. The
other fields describe the traveler’s state at the time the event took place.

Table 2. Traveler event record fields.

Field Description
TIME The current time (seconds from midnight).
TRAVELER The traveler ID.
TRIP The traveler’s trip ID.
LEG The traveler’s plan leg ID.
VEHICLE The vehicle ID; value = 0 if not in a vehicle.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 38

Field Description
VEHTYPE The vehicle type:

 0 = walk
 1 = auto
 2 = truck
 3 = bicycle
 4 = taxi
 5 = bus
 6 = trolley
 7 = streetcar
 8 = light rail
 9 = rapid rail
10 = regional rail

VSUBTYPE The vehicle subtype may be unused; value = 0 if not applicable.
ROUTE The transit route ID; value = -1 if not in a transit vehicle.
STOPS The count of number of stop signs encountered on current plan leg.
YIELDS The count of number of yield signs encountered on current plan leg.
SIGNALS The number of traffic signals encountered on current plan leg.
TURN The type of last turn made:

 0 = straight direction (no turn)
 1 = right turn
 -1 = left turn
 2 = hard right turn
 -2 = hard left turn
 values 3 to 6 represent increasingly more extreme right turns
 values –3 to –6 represent increasingly more extreme left turns
 -7 = reverse direction (U-turn)

STOPPED The time (seconds) spent stopped on current plan leg.
ACCELS The time (seconds) spent accelerating from 0 on current plan leg.
TIMESUM The total time (seconds) spent on current plan leg.
DISTANCESUM The total distance (meters) traveled on current plan leg (see accompanying

text for more information).
USER The analyst-defined field: any integer value is acceptable; definition may

vary with each case study.
LINK The link ID when traveler is on a link or previous link when traveler is in

an intersection.
NODE The node ID traveler is traveling away from on a link or node traveler is in

an intersection.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 39

Field Description
ANOMALY The type of anomaly:

 0 = no anomaly occurred
 1 = traveler is off plan
 2 = traveler cannot find next link in plan
 3 = traveler cannot find next parking place in
 plan
 4 = traveler cannot find next vehicle in plan
 5 = traveler cannot find next transit stop in plan
 6 = traveler cannot board full transit vehicle
 7 = driver of transit vehicle skipped stop that
 had passengers waiting to board
 8 = driver of vehicle cannot change lanes because
 of congestion

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 40

Field Description
STATUS The traveler’s current status bits: (see accompanying text for a detailed

explanation of status bit interpretation).

 0x1 = traveler is on a link (persistent)
 0x2 = change in traveler’s on-link status
 0x4 = traveler is on a leg (persistent)
 0x8 = change in traveler’s on-leg status

 0x10 = change in traveler’s on-trip status
 0x20 = traveler is non-motorized, i.e., walking, bicycling (persistent)
 0x40 = traveler is not in the study area (persistent)
 0x80 = change in traveler’s in-study area status

 0x100 = traveler is in a vehicle (persistent)
 0x200 = change in traveler’s vehicle occupancy status
 0x400 = traveler is the driver (persistent)
 0x800 = change in traveler’s driver status

 0x1000 = traveler is waiting at some location (persistent)
 0x2000 = change in traveler’s waiting status
 0x4000 = location is a parking place (persistent)
 0x8000 = location is a transit stop (persistent)

 0x10000 = driver of transit vehicle is at a transit stop (persistent)
 0x20000 = change in driver’s transit vehicle at stop status
 0x40000 = driver of transit vehicle is on a layover (persistent)
 0x80000 = change in driver’s transit vehicle on layover status
 0x100000 = driver’s transit vehicle is full (persistent)
 0x200000 = change in driver’s transit vehicle full status
 0x400000 = traveler is off plan (persistent)
 0x800000 = change in traveler’s off-plan status

 0x1000000 = beginning of simulation
 0x2000000 = end of simulation
 0x4000000 = location is an activity location (persistent)
 0x8000000 = undefined

 0x10000000 = undefined
 0x20000000 = undefined
 0x40000000 = undefined
 0x80000000 = undefined

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 41

Field Description
LOCATION The traveler’s location: parking place ID, transit stop ID, or activity

location ID, depending on the event as defined as follows:

EVENT LOCATION value
 Begin/End plan leg parking place ID or transit stop ID
 Begin/End trip parking place ID or transit stop ID
 Enter/Exit vehicle parking place ID or transit stop ID
 Begin/End driving parking place ID or transit stop ID
 Waiting for transit transit stop ID
 Waiting at parking parking place ID
 Begin/End activity activity location ID
 Transit vehicle at stop transit stop ID
 Transit vehicle on layover transit stop ID
 Transit vehicle full transit stop ID
 Can’t find parking parking place ID
 Can’t find vehicle parking place ID
 Can’t find transit stop transit stop ID
 Can’t board transit transit stop ID
 Skipped transit stop transit stop ID

When the traveler is on a link or in an intersection, the LOCATION field is
zero.

The STATUS field is bit-oriented. Each bit represents a characteristic about the traveler
that is true whenever the bit is set. Multiple bits set means that multiple characteristics are
true at this time. Interpretation of the STATUS field involves determining which
combination of characteristics is currently true according to the table that describes the
individual bits. It is convenient to view the STATUS field in hexadecimal notation
because this more clearly illuminates the patterns in the field.

Status values are generally represented in bit pairs. The lower bit of a pair is termed the
“persistent bit,” whereas the upper bit is termed the “change bit.”

• The persistent bit is set during the entire time that the condition is true.

• The change bit is set only for the timestep when a change in the persistent bit occurs.

This scheme enables the analyst to identify the beginning and the end of a persistent
condition without comparing multiple events.

For example, when a traveler begins a leg, the persistent bit representing on leg (0x4) is
set, and the change bit representing change in on leg (0x8) is set. While the traveler
is on the leg, the persistent bit (0x4) remains set, and the change bit (0x8) is cleared.
When the traveler ends the leg, the persistent bit (0x4) is cleared, and the change bit (0x8)
is again set for one timestep. While the traveler is not on a leg (e.g., while waiting
somewhere), both the persistent bit and the change bit are cleared.

A few of the status bits take place singly rather than in pairs because both bits are not
required. For example, a persistent bit for on trip is not needed because travelers are

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 42

only simulated while they are on a trip. A persistent bit that is always set provides no
additional information and clutters the output, and therefore it is not used. The non-
motorized bit (0x20) is used in conjunction with the on leg bits to indicate that the
leg does not involve vehicular travel. The location type identification bits
(0x4000, 0x8000, and 0x4000000) are used in two ways:

1) They are used in conjunction with bits 0x1000 and 0x2000 to identify the type of
location at which the traveler is waiting.

2) They are also used to specify the type of location when the LOCATION field
represents a parking place or transit stop ID. For example, when a traveler begins a
leg at a parking place, bit 0x4000 will be set in addition to bits 0x4 and 0x8 to signify
that the beginning location of the leg is a parking place.

The DISTANCESUM field accumulates the distance traveled along links and within
intersections. Upon entering the intersection, DISTANCESUM is incremented by the
setback on the link just left; and when exiting the intersection, DISTANCESUM is
incremented by the setback on new link.

4.4 Snapshot Data

Snapshot data provides detailed information about the state of the simulation at a point in
time. Multiple snapshots allow following the evolution of the simulation state through
time. Snapshot data may be viewed with the Output Visualizer.

4.4.1 Vehicle Snapshot Data

Vehicle snapshot data provide information about vehicles traveling on a link. When
collected for every link on every timestep, such data give a complete trajectory for each
vehicle in the simulation. Vehicle snapshot data are collected as frequently as the analyst
indicates in the input configuration file for the specified links. Table 3 provides a list of
vehicle snapshot record fields.

Table 3. Vehicle snapshot data record fields.

Field Interpretation
VEHICLE The vehicle ID.
TIME The current time (seconds from midnight).
LINK The link ID on which the vehicle was traveling.
NODE The node ID from which the vehicle was traveling away from.
LANE The number of the lane on which the vehicle is traveling.
DISTANCE The distance (in meters) the vehicle is away from the setback of the node from

which it is traveling away.
VELOCITY The velocity (in meters per second) of the vehicle.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 43

Field Interpretation
VEHTYPE The vehicle type:

 0 = walk 6 = trolley
 1 = auto 7 = streetcar
 2 = truck 8 = light rail
 3 = bicycle 9 = rapid rail
 4 = taxi 10 = regional rail
 5 = bus

ACCELER The acceleration (in meters per second) the vehicle had in the current timestep.
DRIVER The driver ID.
PASSENGERS The count of passengers in vehicle.
EASTING The vehicle’s x-coordinate (in meters).
NORTHING The vehicle’s y-coordinate (in meters).
ELEVATION The vehicle’s z-coordinate (in meters).
AZIMUTH The vehicle’s orientation angle (degrees from east in the counterclockwise

direction).
USER The user-defined field that can be set on a per-vehicle basis.

4.4.2 Intersection Snapshot Data

Intersection snapshot data provide information about a vehicle as it traverses an
intersection. These data are collected as frequently as the analyst indicates in the input
configuration file for the specified nodes. Table 4 provides a list of intersection snapshot
record fields.

Table 4. Intersection snapshot data record fields.

Field Interpretation
VEHICLE The vehicle ID.
TIME The current time (seconds from the midnight).
NODE The node ID where the vehicle is located.
LINK The link ID from which the vehicle entered.
LANE The number of the lane from which the vehicle entered.
QINDEX The vehicle position in the intersection buffer.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 44

4.4.3 Traffic Control Snapshot Data

Traffic control snapshot data report the current state of the traffic signal at a node. These
data are collected as frequently as the analyst indicates in the input configuration file for
the specified nodes. Table 5 lists traffic control snapshot record fields.

Table 5. Traffic control snapshot data record fields.

Field Interpretation
NODE The node ID, where the signal is located.
TIME The current time (seconds from midnight).
LINK The link ID entering the signal.
LANE Number of the lane entering the signal.
SIGNAL The type of control present:

 0 = None
 1 = Stop
 2 = Yield
 3 = Wait
 4 = Caution
 5 = Permitted
 6 = Protected
 7 = Permitted after stop

4.5 Summary Data

Summary data reports aggregate data about the simulation. Summary data is sampled,
accumulated, and reported periodically throughout the simulation.

The first record in each summary data file contains metadata information about the
parameters used in data collection. The metadata record begins with the keyword
METADATA, followed by the date on which the file was created. Other items in the
metadata record follow in the form of keyword-value pairs. The metadata items unique to
each summary data file are described in the following sections.

4.5.1 Link Travel Times Summary Data

Link travel time summary data report vehicle counts and travel times on links
accumulated as vehicles exit the links. These data are collected as frequently as the
analyst indicates in the input configuration file for the specified links.

The metadata for the link travel time summary file is the TIME_STEP configuration file
key (i.e., the frequency at which data is reported).

There are separate data records for each turning movement leaving each lane on the link.
Table 6 lists link travel times summary field records.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 45

Table 6. Link travel times summary data field records.

Field Interpretation
LINK The link ID being reported.
NODE The node ID from which the vehicles were traveling away.
TIME The current time (seconds from midnight).
COUNT The number of vehicles leaving the link.
SUM The sum of the vehicle travel times (in seconds) for vehicles leaving the

link. (The time spent in the previous intersection is included in this value.)
SUMSQUARES The sum of the vehicle travel time squares (in seconds squared) for vehicles

leaving the link. (The time spent in the previous intersection is included in
this value.)

TURN The type of turn the vehicle made when leaving the link:
0 = straight direction (no turn)
 1 = right turn
 -1 = left turn
 2 = hard right turn
 -2 = hard left turn
 values 3 to 6 represent increasingly more extreme right turns
 values –3 to –6 represent increasingly more extreme left turns
 -7 = reverse direction (U-turn)

LANE The lane number.
VCOUNT The number of vehicles on the link.
VSUM The sum of vehicle velocities (in meters per second) on the link.
VSUMSQUARES The sum of the squares of the vehicle velocities (in meters squared per

second squared).

4.5.2 Link Densities Summary Data

Link density summary data report vehicle counts and velocities within “boxes” that
partition the link. These data are collected as frequently as the analyst indicates in the
input configuration file for the specified links.

The metadata for the link density summary file are the TIME_STEP, SAMPLE_TIME, and
BOX_LENGTH configuration file keys.

There are separate data records for each lane on the link. The box length is specified in
the input configuration file. Table 7 lists link densities summary record fields.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 46

Table 7. Link densities summary data record fields.

Field Interpretation
LINK The link ID being reported.
NODE The node ID from which the vehicles were traveling away.
DISTANCE The ending distance of the box (in meters) from the setback of the node from

which the vehicles were traveling away.
TIME The current time (seconds from midnight).
COUNT The number of vehicles in the box.
SUM The sum of the vehicle velocities (in meters per second) in the box.
SUMSQUARES The sum of the squares of the vehicle velocities (in meters squared per second

squared).
LANE The lane number.

4.5.3 Link Velocities Summary Data

Link velocity summary data report histograms of vehicle velocities within “boxes” that
partition the link. These data are collected as frequently as the analyst indicates in the
input configuration file for the specified links.

The metadata for the link velocity summary file are the TIME_STEP, SAMPLE_TIME,
BOX_LENGTH, VEHICLE_TYPE, VEHICLE_SUBTYPE, VELOCITY_MAX,
VELOCITY_BINS, and CELL_LENGTH configuration file keys.

The input configuration file specifies the box length, number of histogram bins, and
maximum velocity. The maximum velocity is typically 37.5 m/s and the velocity range is
divided into five bins, in addition to an overflow bin that extends to infinity. Histogram
intervals are defined to be closed at the lower end of the bin and open at the upper end.
Table 8 lists link velocities summary record fields.

Table 8. Link velocities summary data record fields.

Field Interpretation
LINK The link ID being reported.
NODE The node ID from which the vehicles were traveling away.
DISTANCE The ending distance of the box (in meters) from the setback of the node from

which the vehicles were traveling away.
TIME The current time (seconds from midnight).
COUNT0 The number of vehicles with velocities in the range [0, 7.5).
COUNT1 The number of vehicles with velocities in the range [7.5, 15).
COUNT2 The number of vehicles with velocities in the range [15, 22.5).
COUNT3 The number of vehicles with velocities in the range [22.5, 30).
COUNT4 The number of vehicles with velocities in the range [30, 37.5).
COUNT5 The number of vehicles with velocities in the range [37.5, infinity).

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 47

4.5.4 Link Energy Summary Data

Link energy summary data report histograms of vehicle energies (integrated power)
accumulated as vehicles enter the links. Energy is defined as the sum of the vehicle’s
power over each timestep, where power is defined as the velocity times the acceleration
when the acceleration is greater than zero.

The metadata for the link energy summary file are the TIME_STEP, ENERGY_SOAK,
ENERGY_MAX, ENERGY_BINS, SHORT_SOAK_TIME, MEDIUM_SOAK_TIME, and
LONG_SOAK_TIME configuration file keys.

Vehicles are assumed to have zero power while they are at intersections. The units for
energy are cells-squared per second-squared.

These data are collected as frequently as the analyst indicates in the input configuration
file for the specified links. The number of histogram bins and maximum energy is
specified in the input configuration file. Histogram intervals are defined to be closed at
the lower end of the bin and open at the upper end. Table 9 lists link energy summary
record fields.

Table 9. Link energy summary data record fields.

Field Interpretation
LINK The link ID being reported.
NODE The node ID from which the vehicles were traveling away.
TIME The current time (seconds from midnight).
ENERGY0 The number of vehicles with integrated power in the range

[0, energy_maximum / number_bins).
ENERGY1 The number of vehicles with integrated power in the second bin.
ENERGY2 The number of vehicles with integrated power in the third bin.
ENERGYn The number of vehicles with integrated power in the range

[energy_maximum, infinity).

4.6 Output Filtering

A variety of output filtering capabilities have been designed to limit potentially
voluminous output to only those items of interest in a particular simulation run. An
unlimited number of output specifications may be included in the simulation
configuration file, allowing for very fine-grained control of the output produced.

Time-based filtering may be used to restrict data collection to a subset of the total run
time by specifying starting and ending times. The analyst specifies in the input
configuration file the frequency of reporting for evolution and summary data and the
sampling frequency for summary data.

Collected data may be restricted to a subset of nodes and links in the road network. Table
10 describes the field in the node specification file, and Table 11 describes the field in the
link specification file. Regional filtering allows the specification of the corners of a

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 48

rectangular region in which data should be collected. (Note that the Traffic
Microsimulator does not currently use regional filtering.)

Table 10. Node specification fields.

Field Description
NODE The node ID.

Table 11. Link specification fields.

Field Description
LINK The link ID.

Data may be filtered by value, with only those items that pass all filters appearing in the
output. The supported operators for value filtering are indicated in Table 12. Data fields
in a record may be suppressed, resulting in shorter records.

Table 12. Value filtering operators.

Operators Interpretation
== equal to
!= not equal to
< less than

<= less than or equal to
> greater than

>= greater than or equal to
% an integer multiple of
!% not an integer multiple of
@ included in the list (a list is a string of values starting with the left-

bracket character ([), ending with the right-bracket character (]), and
where each value is separated by the pipe character (|))

!@ not included in the list
& has set bits
!& has cleared bits

4.7 Utility Programs

4.7.1 InterpretStatus.awk Utility

The InterpretStatus.awk utility displays the STATUS field in the traveler event output data
as a bit pattern for easier interpretation.

Usage:

 InterpretStatus.awk <event file>

InterpretStatus.awk reads the event file and writes the bit patterns representing the
STATUS field to standard output. The output may be redirected to a file (if preferred).

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 49

4.7.2 SetupOutput Utility

The SetupOutput utility copies a set of empty and test output tables into a specified
directory. It takes the name of the directory as its only argument.

4.7.3 CleanupOutput Utility

The CleanupOutput utility removes a set of tables created by SetupOutput. It takes the
name of the directory as its argument.

4.8 Files

Table 13 lists simulation output library files.

Table 13. Simulation output library files.

Type File Name Description
Binary Files libTIO.a The TRANSIMS Interfaces library.
Source Files outio.c The simulation output data structures and interface

functions.
 outio.h The simulation output interface functions source file.
Utilities InterpretStatus.awk Interprets event status field.
 SetupOutput Creates empty and test output files.
 CleanupOutput Removes empty and test output files.

4.9 Configuration File Keys

In the simulation output keywords, the trailing n must be replaced by an integer,
beginning with 1 for the first set of output of each type (snapshot, event, and summary).
If more than one set of output is desired for a particular type, the second set of keywords
ends with n=2; the third set uses n=3, etc. There is no restriction to the number of output
data sets of each type that may be requested. Default values can be specified for most of
the simulation output keywords. Defaults are particularly useful when multiple output
files are collected and the values of some keywords are the same for all files. The
keywords for specifying default values are described in Appendix E, which follows the
descriptions of the output keywords. The user may override any specified default by
providing a value for the full keyword in the individual output specifications. The use of
default values is optional.

• Appendix A lists the configuration file keys that specify microsimulation parameters.

• Appendix B lists configuration file keys that pertain to the snapshot (evolution) type
of output.

• Appendix C lists configuration file keys that pertain to the event type of output.

• Appendix D lists configuration file keys that pertain to the summary type of output.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 50

• Appendix E lists configuration file keys used by the CompareDensity and
CompareVelocity programs. Only the first of these keys is used by CompareVelocity.

• The configuration file keys in Appendix E are used to provide default values for
many of the keywords described in Appendixes B, C, and D.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 51

Appendix A: Configuration File Keys

Table 14. Configuration file keys.

Configuration File Key Description
CA_BROADCAST_ACC_CPN_MAP
CA_BROADCAST_TRAVELERS

If Broadcast Travelers is set, migrating travelers are
broadcast to every CPU. Because only one CPU will eventually
make use of the traveler, this is inefficient. If Broadcast
Acc CPN Map is set, each CPU knows which CPU is
associated with every accessory, so traveler migration messages
can be targeted to only the single CPU that needs them. If the
CPN Map is not broadcast, travelers must be broadcast.

CA_DECELERATION_PROBABILITY

To enhance traffic variation, each automobile driver randomly
decides whether to decelerate for no apparent reason at each
timestep. The probability of decelerating is a value in the range
0.0 to 1.0. Default = 0.2

CA_ENTER_TRANSIT_DELAY
CA_EXIT_TRANSIT_DELAY

These keys specify the mean number of timesteps it takes for a
single traveler to enter or exit a transit vehicle.

CA_GAP_VELOCITY_FACTOR

At unsignalized intersections and during protected movements
at signalized intersections, drivers wait for a suitable gap in
cross traffic before proceeding through the intersection. The
number of empty cells in a suitable gap is based on the speed of
the cross traffic and the gap velocity factor. The suitable gap is
calculated for each lane of the cross traffic.

Gap = Speed of Oncoming Vehicle * Gap Velocity Factor

The gap velocity factor must be greater than 0.0. The default
value is 3.0. Note that vehicles with a speed of 0 result in a
suitable gap size of 0, which improves traffic flow in congested
conditions.

CA_IGNORE_GAP_PROBABILITY

Drivers at unsignalized intersections wait for a suitable gap in
cross traffic before proceeding through the intersection.
Allowing each driver to ignore the gap constraint with some
probability prevents the deadlock that would take place when
vehicles are waiting for each other at multiway stop/yield signs.
The probability that the drivers at multiway stop/yield signs
will ignore the constraint is a value in the range of 0.0 to 1.0.
Default = 0.66

CA_INTERSECTION_CAPACITY Intersection Capacity determines the number of
vehicles that can be held by each intersection’s buffers.

CA_INTERSECTION_WAIT_TIME

Intersection Wait Time specifies the number of
seconds that a vehicle requires to pass through a signalized
intersection. A vehicle resides in an intersection-queued buffer
for this amount of time and is then placed on the next link if the
first cell on that link is unoccupied. It will remain in the
intersection for a longer time if entry to the next link is blocked
by another vehicle. Valid values are positive.
Default = 1 second

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 52

Configuration File Key Description
CA_LANE_CHANGE_PROBABILITY

Variation in traffic is reduced by not allowing every driver who
would change lanes based on vehicle speed and gaps in the
traffic to do so at each timestep. This is done to prevent lane
hopping. The probability that a driver will change lanes when
speed and gaps permit is a value in the range of 0.0 to 1.0.
Default = 0.99

CA_LATE_BOUNDARY_RECEPTION If Late Boundary Reception is set, the simulation will try
to overlap computation and communication.

CA_LONG_SOAK_TIME The boundary (in seconds) between medium and long soak
times for energy output. Default = 9000

CA_LOOK_AHEAD_CELLS The preferred lane for a vehicle to be in as it approaches an
intersection depends on the connectivity from the current link
to the next link in the plan. In some situations, it is
advantageous for the driver to look beyond the next link to
subsequent links in the plan when deciding the preferred lane.
Look Ahead Cells controls how far ahead the driver will look.
A value of 0 indicates that the driver will not look beyond the
next link. A positive value indicates that the driver will look at
least one additional step beyond the next step in the plan. The
number of additional links considered is determined by the
lengths of the subsequent links, with link lengths being summed
until the accumulated distance is greater than or equal to Look
Ahead Cells. Valid values are positive or zero.
Default = 35 cells

CA_MAX_WAITING_SECONDS Max Waiting Seconds determines the number of seconds
that a vehicle will try to enter an intersection. If the vehicle has
not moved from the link into or through the intersection in Max
Waiting Seconds, the vehicle abandons its plan and tries
an alternative movement through the intersection (if one exists).
Max Waiting Seconds must be > 0 and should be greater
than the longest red phase of the traffic controls in the
simulation. Default = 600 seconds

CA_MEDIUM_SOAK_TIME The boundary (in seconds) between short and medium soak
times for energy output. Default = 1800 seconds

CA_NO_TRANSIT If this flag is set, travelers whose plans originate or end at a
transit stop are removed from the simulation. None of their
remaining legs are used. (The transit driver plans do not fall
into this category, thus transit vehicles can still be present in the
simulation, but no passengers will use them.)

CA_OFF_PLAN_EXIT_TIME

Off Plan Exit Time specifies the number of seconds a
vehicle is allowed to deviate from its plan before being
removed from the simulation. This prevents off-plan vehicles
from wandering on the transportation network. Valid values are
positive. Default = 1 second

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 53

Configuration File Key Description
CA_PLAN_FOLLOWING_CELLS

Plan Following Cells specifies a count of the number
of cells preceding the intersection within which a vehicle will
make lane changes to get in an appropriate lane and thus
transition to the next link in its plan. Beyond this distance, lane-
changing decisions are based only on vehicle speed and gaps in
the traffic. Within this distance, the lane required by the
vehicle’s plan is also taken into account. As the vehicle nears
the intersection, the bias to be in the lane required to stay on
plan is increased. Valid values are positive or zero.
Default = 70 cells

CA_RANDOM_SEED

These three values are combined to initialize the random
number generator. Note that the actual sequence of random
numbers generated on a slave also depends on the number of
slaves and the partitioning in general.

CA_SHORT_SOAK_TIME The boundary (in seconds) between negligible and short soak
times for energy output. Default = 600 seconds

CA_SEQUENCE_LENGTH The slaves are implicitly synchronized among themselves by
the actions of passing boundaries and migrating vehicles. They
are also explicitly synchronized by the master every Sequence
Length timestep. It may be more efficient to allow the implicit
synchronization to control the simulation.

CA_SIM_START_HOUR
CA_SIM_START_MINUTE
CA_SIM_START_SECOND

These values are combined to calculate the simulation’s starting
time. Plans whose estimated arrival time is before the start time
are not executed.

CA_SIM_STEPS The simulation executes Sim Steps timesteps before exiting.
CA_SLAVE_MESSAGE_LEVEL
CA_MASTER_MESSAGE_LEVEL

Only warning messages whose severity is at least as high as
Message Level will be written to the master or slave log
file.

CA_SLAVE_PRINT_MASK
CA_MASTER_PRINT_MASK

These variables control which logging messages to ignore.
They are code set within the code based on the values of the
LOG_ configuration file keys and should not be set directly.

CA_TRANSIT_INITIAL_WAIT Transit Initial Wait specifies the number of timesteps
a transit vehicle must be present at a transit stop before any
passengers get on or off.

CA_USE_NETWORK_CACHE If set, use a cached binary representation of the network. This
representation would have been created by a prior run of the
simulation.

CA_USE_PARTITIONED_ROUTE_FIL
ES

It is more efficient for slaves to read only those plans that start
in the part of the network for which they are responsible. If the
partitioning to be used by the simulation is available (for
example, from a prior run of the simulation), the
DistributePlans utility will create a separate pair of indexes for
each slave into one common plan file. If Use
Partitioned Route Files is set, the slaves will look
for these slave-specific indexes. If they do not exist, the
simulation will fall back to using a single global pair of
indexes.

CA_USE_ROMIO_FOR_OUTPUT If Use Romio For Output is set, and the executable was
compiled with the USE_ROMIO and USE_MPI flags defined,
the parallel output system will use ROMIO files instead of Unix
files.

PAR_HOST_COUNT The number of distinct machines that make up the parallel
machine environment.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 54

Configuration File Key Description
PAR_HOST_I
PAR_HOST_CPUS_I
PAR_HOST_SPEED_I

These variables describe the parallel machine environment to
the simulation. There should be one set of these three variables,
with I replaced by an integer from 0 to the value of
PAR_HOST_COUNT – 1, for each host. Host should be a string
containing the name of the machine. Host CPUs should give
the number of CPUs available for use on the machine. Host
Speed should give the relative speeds of the different
machines in arbitrary units. The sum of all the values of Host
CPUs must be at least one larger than the number of slaves
requested.

PAR_RTM_INPUT_FILE
RTM_FEEDBACK_FILE
RTM_SAMPLE_INTERVAL
PAR_RTM_PENALTY_FACTOR

The partitioning algorithms try to find the partition that spreads
the computation associated with nodes and links evenly while
simultaneously trying to minimize the communication costs
associated with split links. The costs for each node and link can
be estimated using run time costs from prior runs. These costs
are sampled at the interval defined by RTM Sampling Interval
and written out to the file named by RTM File. They are read in
from the file found in the directory named by
OUTPUT_DIRECTORY.

PAR_SLAVES

This key sets the number of slave processes to spawn. It must
be smaller than the number of host CPUs available (to allow
one process for the master).

PLAN_FILE

The plan file specifies the name of the file in which plans reside
or a string to which .tim.idx and .trv.idx can be appended to find
the time-sorted and traveler-id-sorted indexes into a plan file(s).
The plans should include all travelers; for example, plans
created by the Route Planner, transit driver plans, freight plans,
etc. The name should be given as an absolute path name
because the slave executables are not always run from the
current working directory.

VEHICLE_FILE The vehicle file specifies the name in which vehicles reside or a
string to which .veh.idx can be appended to find the vehicle-id-
sorted index into a vehicle file(s). The vehicle file must include
all vehicles to be used in the simulation.

VEHICLE_PROTOTYPE_FILE The vehicle prototype file must include information about every
vehicle type used in the simulation.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 55

Appendix B: Configuration File Keys for Snapshot Output

Table 15. Configuration file keys for snapshot output.

Configuration File Key Description
OUT_SNAPSHOT_BEGIN_TIME_n The first time (in seconds from the midnight before

simulation start) at which to collect data.
OUT_SNAPSHOT_END_TIME_n The last time (in seconds from the midnight before

simulation start) at which to collect data.
OUT_SNAPSHOT_FILTER_n The list of expressions (where each expression has the

form FIELD OPERATOR VALUE and multiple
expressions are separated by semicolons) for filtering
records. Valid values for FIELD are found in Tables 3-5,
and values for OPERATOR are found in Table 12.

OUT_SNAPSHOT_LINKS_n The path of the link specification (described in
Table 11).

OUT_SNAPSHOT_NAME_n The file name for snapshot output.
OUT_SNAPSHOT_NODES_n The path of the node specification (described in

Table 10).
OUT_SNAPSHOT_SUPPRESS_n The list of fields (separated by semicolons) not to

include in the output file.
OUT_SNAPSHOT_TIME_STEP_n The frequency (in seconds) at which to report data (i.e.,

write it to disk).
OUT_SNAPSHOT_TYPE_n The types of snapshot output to collect (separated by

semicolons) permissible values are VEHICLE;
INTERSECTION; SIGNAL.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 56

Appendix C: Configuration File Keys for Event Output

Table 16. Configuration file keys for event output.

Configuration File Key Description
OUT_EVENT_BEGIN_TIME_n The first time (in seconds from the midnight before

simulation start) at which to collect data.
OUT_EVENT_END_TIME_n The last time (in seconds from the midnight before simulation

start) at which to collect data.
OUT_EVENT_FILTER_n The list of expressions (where each expression has the form

FIELD OPERATOR VALUE and multiple expressions are
separated by semicolons) for filtering records. Valid values
for FIELD are found in Table 2, and values for OPERATOR
are found in Table 12. Valid values for VALUE must be
expressed in decimal notation (not hexadecimal).

OUT_EVENT_NAME_n The file name for event output.
OUT_EVENT_SUPPRESS_n The list of fields (separated by semicolons) not to include in

the output file.
OUT_EVENT_TYPE_n The types of event output to collect permissible value is

TRAVELER.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 57

Appendix D: Configuration File Keys for Summary Output

Table 17. Configuration file keys for summary output.

Configuration File Key Description
OUT_SUMMARY_BEGIN_TIME_n The first time (in seconds from the midnight

before simulation start) at which to collect data.
OUT_SUMMARY_BOX_LENGTH_n The length of the boxes (in meters).
OUT_SUMMARY_END_TIME_n The last time (in seconds from the midnight

before simulation start) at which to collect data.
OUT_SUMMARY_ENERGY_BINS_n The number of bins used to cover the range of

the energy histogram.
OUT_SUMMARY_ENERGY_MAX_n The maximum energy in the energy histogram.
OUT_SUMMARY_ENERGY_SOAK_n The single value specifying the soak time for

which to collect energy data. Permissible
values are NEGLIGIBLE; SHORT; MEDIUM;
or LONG. If a key is not specified, all soak
times are included in the energy output.

OUT_SUMMARY_FILTER_n The list of expressions (where each expression
has the form FIELD OPERATOR VALUE and
multiple expressions are separated by
semicolons) for filtering records. Valid values
for FIELD are found in Tables 6-9, and values
for OPERATOR are found in Table 12.

OUT_SUMMARY_LINKS_n The path of the link specification file
(described in Table 11).

OUT_SUMMARY_NAME_n The file name for summary output.
OUT_SUMMARY_SAMPLE_TIME_n The frequency (in seconds) at which to

accumulate data.
OUT_SUMMARY_SUPPRESS_n The list of fields (separated by semicolons) not

to include in the output file.
OUT_SUMMARY_TIME_STEP_n The frequency (in seconds) at which to report

data (i.e., write it to disk).
OUT_SUMMARY_TYPE_n The types of summary output to collect

(separated by semicolons) permissible values
are DENSITY; TIME; VELOCITY; or
ENERGY.

OUT_SUMMARY_VEHICLE_TYPE_n The vehicle type and subtype (separated by
colon) for which to collect velocity data. If
subtype is zero or not specified, data for all
subtypes of type will be included in the
velocity output. If key is not specified, all
vehicle types will be included in the velocity
output.

OUT_SUMMARY_VELOCITY_BINS_n The number of bins used to cover the range of
the velocity histogram (in meters/second).

OUT_SUMMARY_VELOCITY_MAX_n The maximum velocity in the velocity
histogram (in meters/second).

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 58

Appendix E: Default Output Configuration File Keys

Table 18. Default output configuration file keys.

Configuration File Key Description
OUT_BEGIN_TIME_DEFAULT The first time (in seconds from the midnight

before simulation start) at which to collect data.
OUT_END_TIME_DEFAULT The last time (in seconds from the midnight

before simulation start) at which to collect data.
OUT_EVENT_FILTER_DEFAULT The list of expressions (of the form FIELD;

OPERATOR; VALUE; separated by
semicolons) for filtering event records.

OUT_EVENT_SUPPRESS_DEFAULT The list of fields (separated by semicolons) not to
include in the event output file.

OUT_LINKS_DEFAULT The path of the link specification file.
OUT_NODES_DEFAULT The path of the node specification file.
OUT_SNAPSHOT_FILTER_DEFAULT The list of expressions (of the form FIELD;

OPERATOR; VALUE; separated by
semicolons) for filtering snapshot records.

OUT_SNAPSHOT_SUPPRESS_DEFAULT The list of fields (separated by semicolons) not to
include in the snapshot output file.

OUT_SNAPSHOT_TIME_STEP_DEFAULT The frequency (in seconds) at which to report
snapshot data (i.e., write it to disk).

OUT_SUMMARY_BOX_LENGTH_DEFAULT The length of the summary data boxes (in
meters).

OUT_SUMMARY_ENERGY_BINS_DEFAULT The number of bins used to cover the range of the
energy summary histogram.

OUT_SUMMARY_ENERGY_MAX_DEFAULT The maximum energy in the energy histogram (in
cells-squared per second-squared).

OUT_SUMMARY_FILTER_DEFAULT The list of expressions (of the form FIELD;
OPERATOR; VALUE; separated by
semicolons0 for filtering summary records.

OUT_SUMMARY_SAMPLE_TIME_DEFAULT The frequency (in seconds) at which to
accumulate summary data.

OUT_SUMMARY_SUPPRESS_DEFAULT The list of fields (separated by semicolons) not to
include in the summary output file.

OUT_SUMMARY_TIME_STEP_DEFAULT The frequency (in seconds) at which to report
summary data (i.e., write it to disk).

OUT_SUMMARY_VELOCITY_BINS_DEFAULT The number of bins used to cover the range of the
velocity summary histogram.

OUT_SUMMARY_VELOCITY_MAX_DEFAULT The maximum velocity in the velocity histogram
(in meters per second).

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 59

Appendix F: CA Error Codes

Error codes for the CA are in the range 13000 – 13999.

Table 19. CA error codes.

Code Description
13003 Not used.
13004 Not used.
13005 Not used.
13006 The slave or master cannot open output files or find required configuration file keys.
13007 The master cannot partition the network into pieces for each slave to handle, or the

pieces cannot be broadcast to the individual slaves.
13008 The master or slave cannot find and open all of the required network data files, or the

cached network data files are corrupted.
13009 A slave does not acknowledge having read the plans that are required before the first

simulation step.
13010 The master cannot send a message to each slave directing it to execute a sequence of

timesteps.
13011 The master cannot send a message to each slave directing it to execute a single

timestep.
13012 Not used.
13013 The first timestep was not completed.
13014 The parallel communication system broke down.
13015 The master cannot shut down the simulation system.
13016 A slave did not correctly flush its output buffers when it ended.
13017 The master cannot flush run time statistics into the run time monitor output file.
13018 The PLAN_FILE configuration file key is missing from the configuration file.
13019 The file specified by the PLAN_FILE configuration file key cannot be opened for

reading.
13020 The VEHICLE_FILE configuration file key is missing from the configuration file.
13021 The VEHICLE_PROTOTYPE_FILE configuration file key is missing from the

configuration file.
13022 The OUT_DIRECTORY configuration file key is missing from the configuration file.
13023 The CA_USE_NETWORK_CACHE configuration file key is turned on but the cache

files are not readable.
13024 An error in the METIS or orthogonal bisection routines prevents partitioning of a

network.
13025 A saved network partition file specified by the PAR_PARTITION_FILE

configuration file key cannot be used because it assumes a different number of slaves
than specified by the PAR_SLAVES configuration file key.

13026 The list of machines or the location of the current CPU in that list could not be
determined.

13027 A slave could not correctly flush output from a timestep or read in any plans required
for executing the next timestep.

13028 A slave could not find information (e.g., a name) for the host it resides on.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 60

Code Description
13029 A slave is building its portion of the network if it cannot identify the CPU containing

the node at the far end of a distributed link.
13030 A slave received a corrupted message with an unknown event ID.
13031 The vehicle or related index specified by the VEHICLE_FILE configuration key

cannot be processed.
13032 There is a problem with the transit stop data.
13033 The master does not receive expected acknowledgments from all slaves after

prompting them to take an action such as executing a timestep or exchanging
boundary information.

13034 Unexpected messages were received while a slave was waiting for boundary
information from its neighbor CPUs.

13035 A slave received information about a distributed link that is not a part of the portion of
network on that slave during a boundary information exchange.

13036 A slave cannot allocate memory for a message during a boundary information
exchange.

13037 A slave cannot send a message to a neighboring CPU during a boundary information
exchange.

13038 A vehicle was removed from the simulation while it had occupants.”
13039 A capacity constraint on a vehicle was violated.
13040 The simulation attempted to remove the vehicle used internally to represent a blocked

cell in a lane.
13041 A driver attempted to enter a vehicle that already had a driver, or the first node in a

driver’s plan could not be reached from the origin parking lot.
13042 The source of an error cannot be determined.

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 61

Appendix G: Output Representation Error Codes

Error codes for the Output representation are in the range 20000 – 20999.

Table 20. Output representation error codes.

Code Description
20001 Caught signal.
20002 Assertion failed.
20003 Invalid program arguments.
20004 Standard exception.
20005 Unknown exception.
20006 Output subsystem problem.
20007 Storage failure.
20008 Writer failure.
20009 Invalid processor.
20010 Cannot read.
20011 Input error

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 62

Chapter Five: Index

Abandon plan, 25
Activity location, 5
Algorithm, 18, 28, 29
Arrived traveler, 13
Arrived Traveler queue, 13
Arrived Travelers list, 21
Binary files, 49
Boundary exchange, 31
Boundary exchange messages, 30
Boundary information flow, 29
BOX_LENGTH, 45, 46, 57, 58
Bus leg, 5
CA, 1
CA_BROADCAST_ACC_CPN_MAP, 34, 51
CA_BROADCAST_TRAVELERS, 51
CA_DECELERATION_PROBABILITY, 26,

51
CA_ENTER_TRANSIT_DELAY, 20, 51
CA_EXIT_TRANSIT_DELAY, 20, 51
CA_GAP_VELOCITY_FACTOR, 23, 51
CA_IGNORE_GAP_PROBABILITY, 23,

51
CA_INTERSECTION_CAPACITY, 24, 51
CA_INTERSECTION_WAIT_TIME, 22,

24, 27, 51
CA_LANE_CHANGE_PROBABILITY, 17,

52
CA_LATE_BOUNDARY_RECEPTION, 34,

52
CA_LONG_SOAK_TIME, 52
CA_LOOK_AHEAD_CELLS, 52
CA_MASTER_MESSAGE_LEVEL, 53
CA_MAX_WAITING_SECONDS, 25, 52
CA_MEDIUM_SOAK_TIME, 52
CA_NO_TRANSIT, 52
CA_OFF_PLAN_EXIT_TIME, 25, 52
CA_PLAN_FOLLOWING_CELLS, 16, 53
CA_RANDOM_SEED, 53
CA_SEQUENCE_LENGTH, 32, 53
CA_SHORT_SOAK_TIME, 53
CA_SIM_START_HOUR, 13, 53
CA_SIM_START_MINUTE, 13, 53
CA_SIM_START_SECOND, 13, 53
CA_SIM_STEPS, 13, 53
CA_SLAVE_MESSAGE_LEVEL, 53

CA_SLAVES, 13
CA_TRANSIT_INITIAL_WAIT, 20, 53
CA_USE_NETWORK_CACHE, 53
CA_USE_PARTITIONED_ROUTE_FILE
S, 13, 53

CA_USE_ROMIO_FOR_OUTPUT, 53
Cell, 1, 7, 14, 18, 19, 21, 22, 23, 25, 27, 28,

29, 30, 31, 47, 51
CELL_LENGTH, 46
Cellular automata, 1, 6
Change bit, 41
Clean up Edges procedure, 28
Clean up Nodes procedure, 28
CleanupOutput, 49
CleanupOutput utility, 49
Coordinated traffic signal, 3
Desired gap, 23
Destination cell, 22, 25, 27
Distributed links, 29, 30, 31
Driving leg, 5
ENERGY_BINS, 47, 57, 58
ENERGY_MAX, 47, 57, 58
ENERGY_SOAK, 47, 57
Entering parking places, 27
Exiting from parking places, 21
File format, 37
Freeways, 1
Gap, 2, 7, 10, 16, 17, 22, 23, 24, 26, 30, 31,

51
Gap Velocity Factor, 23
Grid cell, 6, 7, 9, 18, 30
Hibernating traveler, 13
Highways, 1
Initialization Sequence, 33
Input configuration file, 37, 42, 43, 44, 45,

46, 47
Input/Output, 2
Intefering lane gap, 23
Interfering Gap Acceptable, 23
Interfering Gap Not Acceptable, 23
InterpretStatus.awk, 49
InterpretStatus.awk utility, 48
Intersection snapshot data, 43
Jam waves, 26
Lane changes, 16, 17, 18, 31, 53
Lane-change logic, 18

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 63

Lane-use restrictions, 3
libTIO.a, 49
Link density summary data, 45
Link energy summary data, 47
Link specification file, 47, 58
Link travel time summary data, 44
Link velocity summary data, 46
LONG_SOAK_TIME, 47
Mass transit, 18
Mass transit vehicles, 18
Master process, 32, 33, 34
Master/slave paradigm, 32
MEDIUM_SOAK_TIME, 47
Merge lanes, 3, 18
Metadata, 44, 45, 46, 47
METIS graph-partitioning library, 28
Microsimulation, 1, 5, 16, 22, 24, 37
Migrate Travelers procedure, 27
Migrate Vehicles process, 27
Movement, 16, 18, 23, 25, 27, 28, 31
Movement Check/Intersections, 21
Movement rule, 25
No-collision condition, 26
Node specification file, 47, 58
Off-plan, 16, 18, 25
Off-plan vehicles, 25, 52
OUT_BEGIN_TIME_DEFAULT, 58
OUT_DIRECTORY, 29
OUT_END_TIME_DEFAULT, 58
OUT_EVENT_BEGIN_TIME_n, 56
OUT_EVENT_END_TIME_n, 56
OUT_EVENT_FILTER_DEFAULT, 58
OUT_EVENT_FILTER_n, 56
OUT_EVENT_NAME_n, 56
OUT_EVENT_SUPPRESS_DEFAULT, 58
OUT_EVENT_SUPPRESS_n, 56
OUT_EVENT_TYPE_n, 56
OUT_LINKS_DEFAULT, 58
OUT_NODES_DEFAULT, 58
OUT_SNAPSHOT_BEGIN_TIME_n, 55
OUT_SNAPSHOT_END_TIME_n, 55
OUT_SNAPSHOT_FILTER_DEFAULT, 58
OUT_SNAPSHOT_FILTER_n, 55
OUT_SNAPSHOT_LINKS_n, 55
OUT_SNAPSHOT_NAME_n, 55
OUT_SNAPSHOT_NODES_n, 55
OUT_SNAPSHOT_SUPPRESS_DEFAULT,

58
OUT_SNAPSHOT_SUPPRESS_n, 55

OUT_SNAPSHOT_TIME_STEP_DEFAUL
T, 58

OUT_SNAPSHOT_TIME_STEP_n, 55
OUT_SNAPSHOT_TYPE_n, 55
OUT_SUMMARY_BEGIN_TIME_n, 57
OUT_SUMMARY_BOX_LENGTH_DEFAUL
T, 58

OUT_SUMMARY_BOX_LENGTH_n, 57
OUT_SUMMARY_END_TIME_n, 57
OUT_SUMMARY_ENERGY_BINS_DEFAU
LT, 58

OUT_SUMMARY_ENERGY_BINS_n, 57
OUT_SUMMARY_ENERGY_MAX_DEFAUL
T, 58

OUT_SUMMARY_ENERGY_MAX_n, 57
OUT_SUMMARY_ENERGY_SOAK_n, 57
OUT_SUMMARY_FILTER_DEFAULT, 58
OUT_SUMMARY_FILTER_n, 57
OUT_SUMMARY_LINKS_n, 57
OUT_SUMMARY_NAME_n, 57
OUT_SUMMARY_SAMPLE_TIME_DEFAU
LT, 58

OUT_SUMMARY_SAMPLE_TIME_n, 57
OUT_SUMMARY_SUPPRESS_DEFAULT,

58
OUT_SUMMARY_SUPPRESS_n, 57
OUT_SUMMARY_TIME_STEP_DEFAULT,

58
OUT_SUMMARY_TIME_STEP_n, 57
OUT_SUMMARY_TYPE_n, 57
OUT_SUMMARY_VEHICLE_TYPE_n, 57
OUT_SUMMARY_VELOCITY_BINS_DEF
AULT, 58

OUT_SUMMARY_VELOCITY_BINS_n, 57
OUT_SUMMARY_VELOCITY_MAX_DEFA
ULT, 58

OUT_SUMMARY_VELOCITY_MAX_n, 57
outio.c, 49
outio.h, 49
Output collection, 36
Output filtering, 47
Output Visualizer, 42
PAR_HOST_COUNT, 53, 54
PAR_HOST_CPUS_I, 54
PAR_HOST_I, 54
PAR_HOST_SPEED_I, 54
PAR_PARTITION_FILE, 29

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 64

PAR_PARTITION_FILE,
PAR_USE_METIS_PARTITION, 29

PAR_RTM_PENALTY_FACTOR, 29, 54
PAR_SAVE_PARTITION, 29
PAR_SLAVES, 54
PAR_USE_OB_PARTITION, 29
Parallel code, 34
Parallel computation, 28
Parallel Computation Sequence, 32
Parallel update scheme, 7
Parking location, 5
Parking lot, 4, 5
Passing lane changes, 16
Persistent bit, 41
PLAN_FILE, 54
Plan-following lane change, 17
Preferred lane, 17, 52
Prepare nodes, 27
Prepare Nodes, 9
Read Plans process, 13, 21
Realistic simulation, 6
Regional filtering, 48
Route Planner, 1, 4, 14, 54
RTM_FEEDBACK_FILE, 29, 54
SAMPLE_TIME, 45, 46, 57, 58
SetupOutput, 49
SetupOutput utility, 49
SHORT_SOAK_TIME, 47
Signalized intersection, 22, 51
Simulation, 34
Simulation Output subsystem, 37
Slave processes, 32, 54
Snapshot data, 9, 10, 42, 58
Source files, 49
Spatial summaries, 10
Special cases, 18
Speed limit, 3
Streets, 1
Summary data, 9, 10, 44, 47, 58
Synchronization point, 32
Temporal summaries, 10
Termination, 34
TIME_STEP, 44, 45, 46, 47, 55, 57, 58

Timestep, 1, 7, 8, 11, 14, 16, 17, 20, 21, 22,
24, 25, 26, 27, 32, 34, 41, 42, 47

Traffic animation, 10
Traffic control, 22, 24
Traffic control snapshot data, 44
Traffic dynamics, 16, 26
Traffic Microsimulator, 1, 2, 3, 6, 9, 11, 13,

14, 16, 18, 27, 28, 32, 34, 36, 37, 48
Traffic-control logic, 7
TRANSIMS Interfaces library, 49
Transit route, 3, 38
Transit route files, 13
Transit stop, 2, 3, 7, 8, 9, 18
Transit stop capacity, 5
Transportation network partition, 28
Transportation plan, 3
Travel plan, 4
Traveler, 1, 3, 4, 5, 6, 10, 11, 13, 14, 20, 21,

27, 30, 41, 48
Traveler event records, 37
Traveler events, 9
Traveler plan, 13
Traveler queue, 20, 21
Turn pocket lane, 18
Turn pocket lanes, 1
Turn pockets, 3
Turn prohibition, 3
Unimodal legs, 3
Unsignalized intersection, 22, 25, 51
Unsignalized intersections, 22
Vehicle, 1, 3, 4, 5, 6, 7, 10, 11, 13, 14, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 30, 31, 42, 43, 44, 45, 46

Vehicle capacity, 5
Vehicle migration messages, 30
Vehicle movement, 6
Vehicle prototype, 13
Vehicle snapshot data, 42
VEHICLE_FILE, 54
VEHICLE_PROTOTYPE_FILE, 54
VEHICLE_SUBTYPE, 46
VEHICLE_TYPE, 46, 57
VELOCITY_BINS, 46, 57, 58
VELOCITY_MAX, 46, 57, 58
Walking leg, 5

Chapter Five—Traffic Microsimulator Los Alamos National Laboratory

	Introduction
	Overview
	Traffic Microsimulator Major Input/Output

	Traffic Microsimulator Description
	Overview
	Single-Trip Example
	Walking Legs
	Bus Legs
	Parking Lot
	Driving Legs
	Realistic Simulation

	Cellular Automata
	Traffic Microsimulator Output

	Algorithm
	Overview
	Placing Travelers and Vehicles
	Updating Traveler Locations
	Traffic Dynamics
	Lane Changes
	Passing Lane Change
	Plan-following Lane Change
	Special Cases
	Mass Transit
	Merge Lanes
	Turn Pocket Lanes
	Look Ahead Across Links

	Transit
	Exiting from Parking Places
	Movement Check/Intersections
	Off-plan Vehicles
	Abandon Plan
	Movement
	Entering Parking Places

	Preparing for a Timestep
	Update Signals
	Prepare Nodes

	Cleaning Up After a Timestep
	Migrate Vehicles
	Migrate Travelers
	Clean up Nodes
	Clean up Edges

	Supporting Parallel Computation
	Transportation Network Partition
	Distributed Links and Boundary Information Flow
	Parallel Computation Sequence and Synchronization Points
	Initialization Sequence
	Simulation
	Termination
	Overlapping Computation and Communication
	Output Collection

	Simulation Output Files
	Overview
	File Format
	Traveler Event
	Snapshot Data
	Vehicle Snapshot Data
	Intersection Snapshot Data
	Traffic Control Snapshot Data

	Summary Data
	Link Travel Times Summary Data
	Link Densities Summary Data
	Link Velocities Summary Data
	Link Energy Summary Data

	Output Filtering
	Utility Programs
	InterpretStatus.awk Utility
	SetupOutput Utility
	CleanupOutput Utility

	Files
	Configuration File Keys

